Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Sensor Networks and Applications

    A tantárgy neve magyarul / Name of the subject in Hungarian: Szenzorhálózatok és alkalmazásaik

    Last updated: 2016. május 23.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    MSc in Electrical Engineering, Secondary Specialization: Smart City
    Course ID Semester Assessment Credit Tantárgyfélév
    VITMMA09 1 2/1/0/v 4  
    3. Course coordinator and department Dr. Vidács Attila, Távközlési és Médiainformatikai Tanszék
    4. Instructors

    Attila Vidács, PhD - Associate Professor

    Rolland Vida, PhD - Associate Professor

    5. Required knowledge

    Infocommunications

    Networking technologies and applications

    6. Pre-requisites
    Kötelező:
    NEM ( TárgyEredmény( "BMEVITMM348" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény( "BMEVIETMA03" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVITMM348", "FELVETEL", AktualisFelev()) > 0
    VAGY
    TárgyEredmény("BMEVIETMA03", "FELVETEL", AktualisFelev()) > 0)

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    Ajánlott:
    Infocommunications
    7. Objectives, learning outcomes and obtained knowledge

    The "intelligence" of smart environments (cities, workplaces, homes) is mainly due to the different sensors that are embedded in roads, walls, or integrated in the smart devices of the users. These sensors continuously monitor the surrounding physical world, gather raw data, which are then shared by joining them in a network. The raw data are processed and then value added information is generated and fed back to the users. The course provides an insight into the broad area of wireless sensor networks (WSNs). It discusses the problems of data gathering, processing and ad hoc communication for resource-constrained devices, it presents the necessary middleware services, and briefly touches the areas of security and privacy related to wireless sensor networks. It presents the most important current and future application domains of sensor networks, special emphasis being on applications and services related to intelligent environments.

    8. Synopsis

    1. Software and hardware architectures of intelligent sensors. Hardware components of motes. Special operating systems for sensors (TinyOS, nesC, MOS).

    2. Communication protocols: physical layer, sleep scheduling, time synchronization, data-link layer, medium access control.

    3. Networking layer, energy- and location-aware routing, clustering, data-centric communication. Transport layer TCP-like protocols with low memory requirements. Application layer protocols (SMP, TADAP, SQDDP).

    4. Sensor network architectures. WSN planning strategies. Topology construction and management, single- and multi-hop communication, energy-efficiency, topology control.

    5. Event-, time- and query-driven control. In-network data aggregation. Mobility in WSNs, sink vs. node mobility, virtual mobility.  

    6. Localization and tracking in WSNs, location-aware operation.

    7. WSN simulation tools (tossim). Test networks (IoT-LAB). Standardisation (IEEE 802.15.4, ZigBee).

    8. Security in WSNs. Secure data transfer. Critical infrastructure and its protection. Distributed attacks and defense.  

    9. Crowdsourcing and crowdsensing applications. Scholarship mechanisms.

    10. Sensitive data in WSNs. Data availability, access rights. User authentication and tracking. Anonimty in WSNs.

    11. Typical WSN application domains. Case studies. Smart city pilot projects (Smart Santander, Yokohama Smart City Project, T-City Szolnok, etc.). Smart workplaces, smart home projects.

    12. Future work – „smart dust”, internet of things. 
    9. Method of instruction

    2 hours of lectures each week, 2-hour laboratory work bi-weekly. The theoretical knowledge presented in the lectures is completed by uses cases and practical examples, parts of which are prepared by the students as part of a homework.

    10. Assessment

    The requirement for the signature is the presentation of a homework prepared during the year. 

    11. Recaps

    Submission of the homework before the exam period.

    12. Consultations

    Based on personal discussions with the lecturers. 

    13. References, textbooks and resources
    1. H. Karl, A. Willig, „Protocols and Architectures for Wireless Sensor Networks”, John Wiley & Sons Ltd, 2005 (ISBN 0-470-09510-5)
    2. I. Stojmenovic, „Handbook of Sensor Networks – Algorithms and architectures”, John Wiley & Sons Ltd, 2005 (ISBN 0-471-68472-4)
    3. F. Zhao, L. Gubias, „Wireless Sensor Networks – An Information Processing Approach”, Morgan Kaufmann (Elsevier), 2004 (ISBN 1-55860-914-8)
    4. E. H. Callaway, „Wireless Sensor Networks – Architectures and Protocols”, Auerbach (CRC Press), 2003 (ISBN 0-8493-1823-8)
    14. Required learning hours and assignment
    Kontakt óra42
    Félévközi készülés órákra14
    Felkészülés zárthelyire
    Házi feladat elkészítése16
    Kijelölt írásos tananyag elsajátítása
    Vizsgafelkészülés48
    Összesen120
    15. Syllabus prepared by

    Attila Vidács, PhD - Associate Professor

    Rolland Vida, PhD - Associate Professor