A tantárgy neve magyarul / Name of the subject in Hungarian: Infokommunikáció

Last updated: 2016. augusztus 1.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Electrical Engineering, BSc Course
Course ID Semester Assessment Credit Tantárgyfélév
VITMAB03 4 2/2/0/v 5  
3. Course coordinator and department Dr. Varga Pál,
6. Pre-requisites
(TárgyEredmény( "BMEVIHVAB01" , "aláírás" , _ ) = -1
VAGY TárgyEredmény( "BMEVIHVA200" , "aláírás" , _ ) = -1 )

ÉS NEM ( TárgyEredmény( "BMEVITMA301" , "jegy" , _ ) >= 2
TárgyEredmény("BMEVITMA301", "FELVETEL", AktualisFelev()) > 0)

ÉS (Training.Code=("5N-A7") VAGY Training.Code=("5N-A7H") VAGY Training.Code=("5NAA7"))

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

7. Objectives, learning outcomes and obtained knowledge
Basic goal of the „Infocommunication” subject is to present specific terms, procedures, problems and solutions
used in telecommunications. The subject strives to give solid basis of the most important terms and
procedures to support further studies of related orientations. For all future electroengineers the subject provides basic knowledge for the forthcoming studies,
whatever specialization is chosen by the student. Both the lectures and the seminars aim to teach the students so that they not only understand
but are able to apply the known methods, procedures, e.t.c., on their own. On the other hand,
it is also important to point out the trends and innovations of the infocommunication technologies so
that the students could be able understand them with a little individual effort.
8. Synopsis Stochastic processes. Parameters, classification, operations on processes.

1)     Stochastic processes. Parameters, classification, operations on processes.

2)     Sampling. Spectrum of a Sampled Signal. Narrow Band Signal Sampling.

3)     Signal Reconstruction from Samples. Shanon Theorem.

4)     Linear and Nonlinear Quantization. Quantization Error and Noise. PCM signal.

5)     Physical Properties of Sound. Physiological Properties of Hearing.

6)     Physical properties of Light. Physiological Properties of Vision.

7)     Information contents of still and moving images.

8)     Construction of metal cables (aerial cable, flat cable, UTP, coaxial cable) and their parameters (specific attenuation and phase, propagation delay and velocity.

9)     Construction of optical fiber cable types (SI, GI, SM) and their parameters (NA, modal dispersion, chromatic dispersion.

10)  Hybrid, two and four-wire repeater. The loop stability issue. Near and far end crosstalk.

11)  Wave Propagation Modes I. Line-of-sight, multipath, and surface wave propagation.

12)  Wave Propagation Modes II. Refraction, diffraction, tropospherical scatter, ionospherical propagation.

13)  AMDSB, AMDSB/SC, AMSSB. Spectrum, representations, demodulation.

14)  Analog Phase and Frequency Modulation. Bandwidth, demodulation.

15)  Baseband Digital Modulation. PAM. Probability of Error.

16)  Matched Filters. Inter-symbol Interference. Nyquist criterium

17)  Digital Carrieer Modulations. ASK, PSK, FSK. Time domain repr., spectrum.

18)  M-ary PSK. Constellation diagram. Bandwidth and power comparison to BPSK.

19)  QAM, a and q components. QAM modulator and demodulator. Carrier recovery.

20)  Channel Allocation Methods (FDM, TDM). Voice channel multiplexing.

21)  Random TDMA procedures: Roll-call polling, Hub poling, token ring.

22)  Random TDMA procedures: pure and slotted Aloha, carrier sensing multiple access.

23)  Spread Spectrum Multiple Access: CDMA, FHMA, slow and fast freq. hopping

24)  Terrestrial and Satellite P-Point Communication. Transmitter, transponder, receiver.

25)  Mobile Operational Modes: Simplex, Half Duplex, Mobile Relay, Full Duplex.

26)  Mobile Propagation Features: Multipath propagation, Rayleigh fading, Doppler effect.

27)  GSM Channel allocation: uplink, downlink, FDMA/TDMA

28)  GSM Network Structure. BSS, BSC, MSC, HLR, VLR, EIR, OMC.

29)  GSM area coverage, clusters, S/I ratio

9. Method of instruction
Theoretical basis given on lectures, 3 hours/week. Practical examples and numerical problems are discussed on 
seminars, 2 hours/week.
10. Assessment
One midterm test on the 11th week.
Exam: same form as the midterm test, i.e. students have to solve 3 numerical examples, 
write one essay on topic discussed on the lecture and give short explanation of 10 keywords.
11. Recaps
Those who failed the midterm test, have to write a complementary test on the 13th week or (and if failed again)
on the 1st exam (in the latter case from the whole topics). Signature given to those who passed one of the tests. As commonly, those who fail the exam have right for one repeated exam and one "dean's chance".
12. Consultations
Consultations from the material of lectures and seminars given separately by the lecturer and 
the seminar leader on the students' request.
13. References, textbooks and resources
M. Schwatz, Information Transmission, Modulation, and Noise, McGraw Hill, 1970.
S. Haykin, Digital Communications, Wiley, 1988.
S. Haykin, Communication Systems, Wiley, 2001.
J. G. Proakis, M. Salehi, Fundamentals of Communication Systems, Pearson Prentice Hall, 2005.
Goff Hill (szerk.), The Cable and Telecommunications Professionals’ Reference, Elsevier, Focal Press,  2007 (3rd edition).
John C. Bellamy, Digital Telephony, a Wiley Interscience Publication, 2000.
Behrouz A. Forouzan, Data Communications and Networking, McGraw-Hill, 2007.
14. Required learning hours and assignment
Kontakt óra 
Félévközi készülés órákra70
Felkészülés zárthelyire30
Házi feladat elkészítése20
Kijelölt írásos tananyag elsajátítása 
15. Syllabus prepared by Dr. Peter Pfliegel