Belépés címtáras azonosítással
magyar nyelvű adatlap
angol nyelvű adatlap
Infocommunications
A tantárgy neve magyarul / Name of the subject in Hungarian: Infokommunikáció
Last updated: 2016. augusztus 1.
A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.
A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.
Basic goal of the „Infocommunication” subject is to present specific terms, procedures, problems and solutions used in telecommunications. The subject strives to give solid basis of the most important terms and procedures to support further studies of related orientations. For all future electroengineers the subject provides basic knowledge for the forthcoming studies, whatever specialization is chosen by the student. Both the lectures and the seminars aim to teach the students so that they not only understand but are able to apply the known methods, procedures, e.t.c., on their own. On the other hand, it is also important to point out the trends and innovations of the infocommunication technologies so that the students could be able understand them with a little individual effort.
1) Stochastic processes. Parameters, classification, operations on processes.
2) Sampling. Spectrum of a Sampled Signal. Narrow Band Signal Sampling.
3) Signal Reconstruction from Samples. Shanon Theorem.
4) Linear and Nonlinear Quantization. Quantization Error and Noise. PCM signal.
5) Physical Properties of Sound. Physiological Properties of Hearing.
6) Physical properties of Light. Physiological Properties of Vision.
7) Information contents of still and moving images.
8) Construction of metal cables (aerial cable, flat cable, UTP, coaxial cable) and their parameters (specific attenuation and phase, propagation delay and velocity.
9) Construction of optical fiber cable types (SI, GI, SM) and their parameters (NA, modal dispersion, chromatic dispersion.
10) Hybrid, two and four-wire repeater. The loop stability issue. Near and far end crosstalk.
11) Wave Propagation Modes I. Line-of-sight, multipath, and surface wave propagation.
12) Wave Propagation Modes II. Refraction, diffraction, tropospherical scatter, ionospherical propagation.
13) AMDSB, AMDSB/SC, AMSSB. Spectrum, representations, demodulation.
14) Analog Phase and Frequency Modulation. Bandwidth, demodulation.
15) Baseband Digital Modulation. PAM. Probability of Error.
16) Matched Filters. Inter-symbol Interference. Nyquist criterium
17) Digital Carrieer Modulations. ASK, PSK, FSK. Time domain repr., spectrum.
18) M-ary PSK. Constellation diagram. Bandwidth and power comparison to BPSK.
19) QAM, a and q components. QAM modulator and demodulator. Carrier recovery.
20) Channel Allocation Methods (FDM, TDM). Voice channel multiplexing.
21) Random TDMA procedures: Roll-call polling, Hub poling, token ring.
22) Random TDMA procedures: pure and slotted Aloha, carrier sensing multiple access.
23) Spread Spectrum Multiple Access: CDMA, FHMA, slow and fast freq. hopping
24) Terrestrial and Satellite P-Point Communication. Transmitter, transponder, receiver.
25) Mobile Operational Modes: Simplex, Half Duplex, Mobile Relay, Full Duplex.
26) Mobile Propagation Features: Multipath propagation, Rayleigh fading, Doppler effect.
27) GSM Channel allocation: uplink, downlink, FDMA/TDMA
28) GSM Network Structure. BSS, BSC, MSC, HLR, VLR, EIR, OMC.
29) GSM area coverage, clusters, S/I ratio
Theoretical basis given on lectures, 3 hours/week. Practical examples and numerical problems are discussed on seminars, 2 hours/week.
One midterm test on the 11th week. Exam: same form as the midterm test, i.e. students have to solve 3 numerical examples, write one essay on topic discussed on the lecture and give short explanation of 10 keywords.
Those who failed the midterm test, have to write a complementary test on the 13th week or (and if failed again)on the 1st exam (in the latter case from the whole topics). Signature given to those who passed one of the tests. As commonly, those who fail the exam have right for one repeated exam and one "dean's chance".
Consultations from the material of lectures and seminars given separately by the lecturer and the seminar leader on the students' request.
M. Schwatz, Information Transmission, Modulation, and Noise, McGraw Hill, 1970. S. Haykin, Digital Communications, Wiley, 1988. S. Haykin, Communication Systems, Wiley, 2001. J. G. Proakis, M. Salehi, Fundamentals of Communication Systems, Pearson Prentice Hall, 2005. Goff Hill (szerk.), The Cable and Telecommunications Professionals’ Reference, Elsevier, Focal Press, 2007 (3rd edition). John C. Bellamy, Digital Telephony, a Wiley Interscience Publication, 2000. Behrouz A. Forouzan, Data Communications and Networking, McGraw-Hill, 2007.