Foundation of Computer Science

A tantárgy neve magyarul / Name of the subject in Hungarian: A számítástudomány alapjai

Last updated: 2012. november 21.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Course ID Semester Assessment Credit Tantárgyfélév
VISZA105   4/2/0/v 6  
3. Course coordinator and department Dr. Katona Gyula,
7. Objectives, learning outcomes and obtained knowledge

The objective is to provide the students with the required theoretical background in combinatorics, algorithmics, elementary cryptography, and graph theory for further studies in electrical engineering.

Obtained skills and expertise:


Theoretical knowledge and problem solving skills in the treated fields of mathematics.



8. Synopsis Basic concepts of combinatorics (permutations, variations, combinations). Basic concepts of graph theory (vertex, edge, degree, isomorphism). Path, circuit, connectivity, trees. Planar graphs, duality. Algorithms in graph theory (minimum cost tree, shortest path, maximum matching, flow problems, topological sorting, PERT method). Higher connectivity numbers of graphs. Graph coloring problems (vertex, edge and map coloring). Euler- and Hamiltonian circuits. Basic concepts of algorithms and complexity. Polynomially solvable and NP-complete problems. Basic concepts in number theory (divisibility, primes, congruences, Euler-Fermat theorem), algorithms in number theory (prime tests, public key cryptography). Basic concepts of abstract algebra (operations, structures), semi-groups. Groups, transformation groups, important special groups, factor group. Rings and fields.


13. References, textbooks and resources
  • M. O. Albertson, J. P. Hutchinson: Discrete Mathematics with Algorithms, Wiley, 1988

14. Required learning hours and assignment
Kontakt óra
Félévközi készülés órákra
Felkészülés zárthelyire
Házi feladat elkészítése
Kijelölt írásos tananyag elsajátítása