Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    High Voltage and High Current Engineering

    A tantárgy neve magyarul / Name of the subject in Hungarian: Nagyfeszültségű és nagyáramú technika

    Last updated: 2016. augusztus 27.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    PhD Course
    Course ID Semester Assessment Credit Tantárgyfélév
    VINFD062   4/0/0/v 5  
    3. Course coordinator and department Dr. Koller László,
    4. Instructors

    Name

    Affiliation

    Department, institute

    Dr. István Berta

    professor

    Department of Electric Power Engineering, Group of High Voltage Technology and Equipment

    Dr. Bálint Németh

    associate professor

    Department of Electric Power Engineering, Group of High Voltage Technology and Equipment

    5. Required knowledge

    Physics and Diagnostics of Insulations, Electric Switching Devices, Mathematics, Physics, Electromagnetic fields, Measurement Technology, Power System Engineering

    7. Objectives, learning outcomes and obtained knowledge

    The main aim of the subject is to introduce the latest techniques of calculation and measurement of high voltage and high current, which is the basis of the economic and safe operation of many electrical equipment. This is the theoretical and practical principle of the reliable operation of grids – with a voltage level of a few hundred kilovolts and nominal (or fault) current of a few kiloamper – the insulators, or the connectors and mounting units.

    8. Synopsis

    -    Generation and measurement of high voltage

    -    Generation of high direct/alternating/impulse voltages

    -    Internal and environmental overvoltage

    -    Design and operation of impulse voltage generators

    -    Measurement of high direct/alternating/impulse voltages

    -    Special design and measurement principles

    -    Investigation of transient processes

    -    Calculation and measurement of high electric fields

     

    -    Properties of electrical insulators

    -    Measurement of dielectric parameters of insulators

    -    Insulation diagnostics

     

    -    Equipment and operation of high voltage laboratories

    -    Overvoltage-protection, EMC, electric and magnetic shielding

    -    Electrical discharges in gases, liquids and solid materials

    -    Special safety requirements of high voltage systems

    -    Live-line maintenance

     

    -    Scope and inspection methods of high current technology

    -    Skin effect, models in ferromagnetic and non-ferromagnetic conductors

    -    Heating phenomena

    -    Heating caused by nominal and overcurrent

    -    Electrodynamic forces between high-current busbars and electrodes

    -    The electric arc

    -    Interruption of high-current arcs

     

    -    Role of high-current technology in the economic way of design of electrical equipment

    -    Design and operation of test transformers. Generation of high alternating voltages by oscillating circuit

     

    -    Effects of current in the human body: heat, mechanical, electrochemical effects and paralysis. Role of current, frequency and time, allowable limits.

    -    Effects of electric and magnetic fields. Laboratory tests on animals and humans. Epidemiologic inspections.

    -    Induced current in the human body. Direct effects of electric and magnetic fields.

    -    Contact with metal objects in electromagnetic fields.

     

    -    Calculation of electric field around high voltage power lines. Measurement of electric and magnetic fields.

    -    Ionizing and non-ionizing radiations. Heat effects of non-ionizing radiations. Direct harm caused by the photon of ionizing radiations. Description of doses. Equipment of measurement.

    -    Special stresses: natural electric and magnetic fields.

    -    Lightning.

    -    Electrostatic fields.

     

    9. Method of instruction

    Lecture

    10. Assessment

    a. Mid-term period: literature overview

    b. Examination period: exam

    13. References, textbooks and resources

    Handbook of Electrostatic Processes,Ed. Jen-shih Chang,Marcel Dekker Inc, New York, 1995, Chapter 31. Berta, I.

    Horváth, T.: Fundamentals of Lightning and Lightning Protection, RSP, Herfordshire, UK, 2006

    Horváth T.- Csernátony-Hoffer, A.: Nagyfeszültségű technika. (Tankönyvkiadó, Budapest. 1986.)

    Horváth, T. - Berta, I: Static Elimination, RSP, John Wiley & Sons, Chichester, 1982

    Horváth, T. – Berta, I. – Pohl, J.: Az elektrosztatikus feltöltődések (Műszaki Könyvkiadó, Budapest, 1984.)

    Németh, E. – Horváth, T.: Nagyfeszültségű szigeteléstechnika. Tankönyvkiadó, Budapest. 1990.

    Horváth, T. – László – Máthé, B. – Németh, E.: Villamos szigetelések vizsgálata. Műszaki könyvkiadó. Budapest. 1979.

    Koller, L.: Nagyfeszültségű kapcsolókészülékek, elektronikus jegyzet

    14. Required learning hours and assignment
    Kontakt óra
    Félévközi készülés órákra
    Felkészülés zárthelyire
    Házi feladat elkészítése
    Kijelölt írásos tananyag elsajátítása
    Vizsgafelkészülés
    Összesen
    15. Syllabus prepared by

    Name

    Affiliation

    Department, institute

    Dr. István Berta

    professor

    Department of Electric Power Engineering, Group of High Voltage Technology and Equipment

    Dr. Bálint Németh

    associate professor

    Department of Electric Power Engineering, Group of High Voltage Technology and Equipment

    Gábor Göcsei

    assistant lecturer

    Department of Electric Power Engineering, Group of High Voltage Technology and Equipment