Komplex federált modellek a gépi tanulásban

A tantárgy angol neve: Complex Federated Models in Machine Learning

Adatlap utolsó módosítása: 2020. december 10.

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar
Villamosmérnöki szak
Mérnök informatikus szak
Szabadon választható tantárgy
Tantárgykód Szemeszter Követelmények Kredit Tantárgyfélév
VIMIAV25   2/0/0/f 2  
3. A tantárgyfelelős személy és tanszék Dr. Antal Péter,
4. A tantárgy előadója

Dr. Antal Péter egyetemi docens, MIT

Dr. Bolgár Bence tudományos munkatárs, MIT

Dr. Dobrowiecki Tadeusz egyetemi tanár, MIT


6. Előtanulmányi rend
Ajánlott:
Mesterséges Intelligencia
7. A tantárgy célkitűzése

Az adatok elosztott jellegének dominánssá válása új lendületet adott az elosztott mesterséges intelligencia és gépi tanulási kutatásoknak. Az új kutatási irányok átfogtak több, évtizedek óta fejlődő részterületet is, mint például a kooperatív rendszerek elméletét, a multi-ágens rendszerek elméletét, a párhuzamos számítások területét, a statisztikai meta- és mega-elemzések megközelítéseit, illetve a statisztikai adat- és tudásfúziós módszerek vizsgálatát. Bár az új megközelítések, mint például a federált (gépi) tanulás, egy standardizált, könnyen felskálázható környezetet tételeztek fel, például homogén adatforrásokkal és résztvevőkkel, hamar megjelentek ennek a standardizált federált/kollaboratív tanulásnak a komplex általánosításai. A komplex elosztott gépi tanulási módszerek pedig sok tekintetben visszatértek a korábban vizsgált heterogén adat- és tudásforrások heterogén számítási egységek rendszere által végzett együttes elemzésének a kérdéséhez, amelyet nagy mennyiségű részleges statisztikák elérhetősége vagy a terület többfeladatos (multi-task) jellege is gazdagít.

A tantárgy célja elosztott adatforrások, részleges statisztikák és tudásforrások intelligens elemzési kereteinek és módszereinek bemutatása, elsősorban a mesterséges intelligencia és a gépi tanulás iránt érdeklődő hallgatók számára. A tárgy szisztematikusan bemutatja a több adatforrás használatának statisztikai problémáit és megközelítéseit, az elosztott kooperatív, intelligens rendszerek alapelveit, a horizontálisan és vertikálisan felosztott adat esetén használható gépi tanulási módszereket, a népszerű federatív és kollaboratív tanulási sémákat és azok komplex kiterjesztéseit különös tekintettel inhomogén és multimodális adatforrások használatára többfeladatos problémákban.

A tárgy épít a Mesterséges intelligencia tantárgyban tanult módszerekre és ezeket felhasználva végigköveti az intelligens szolgáltatások kialakításának folyamatát a tudásalapú modellezés technológiáitól indulva, az adatok gyűjtését és kiértékelését egységesen kezelő  automatizált gépi tanulás (AutoML) és aktív tanulás bemutatásával is. A tárgy továbbá kitekintést ad az elosztott, versengő vagy együttműködő többágenses megoldásokra, robotikus környezetekre, elosztott vegyes ember-gép rendszerek lehetőségeire, beleértve a gépi tanítás friss paradigmáját is.

8. A tantárgy részletes tematikája

1.       Statisztikai paradigmák, a Bayes-statisztikai paradigma, Bayesi becslés- és döntéselmélet. A konjugáltság és elégséges statisztika fogalma. Statisztikai meta-elemzések és több adatforrás elemzésének klasszikus problémái, mint például kiválasztási elfogultság és zavaró tényezők.

2.       Sztochasztikus szimulációs eljárások. Gyakori eloszlások generálása. Mintavételi módszerek. Markov láncokon alapuló sztochasztikus szimulációs eljárások (Markov Chain Monte Carlo módszerek): Gibbs, Metropolis és hibrid MCMC. Több-partneres sztochasztikus következtetés elosztott adat- és tudásforrások esetén.

3.       Bayesi következtetés közelítő módszerekkel. Az EM algoritmus család és alkalmazása. A variációs bayesi megközelítés több-partneres alkalmazása.

4.       Valószínűségi gráfos modellek és elosztott tanulásuk horizontálisan és vertikálisan felosztott adatforrásokból. Oksági Bayes-hálók. Faktor-gráfok. Összeg-szorzat (sum-product) hálózatok. Valószínűségi relációs modellek.

5.       Bayesi neurális hálózatok és federált tanulási algoritmusaik.

6.       Komplex federált tanulási algoritmusok inhomogén adatforrásokra.

7.       Komplex federált tanulási algoritmusok többfeladatos problémákban.

8.       Komplex federált tanulási algoritmusok privát partneri információk felhasználásával.

9.       Komplex federált tanulási algoritmusok kooperáció esetén: a kooperatív, többágenses rendszerek architektúrái, többágenses rendszerek szervezeti formái és azok tulajdonságai. Szervezeti formák tipikus alkalmazási környezetei, a centralizált rendszerektől az elosztott intelligenciáig.

10.   Integráció kommunikáció révén. Ágens kommunikációs nyelvek speciális vonásai. Párbeszéd-protokollok fajtái. Kommunikációs párbeszéd szabványosítási problémái. BDI rendszermodell. Kooperatív protokollok.

11.   Konfliktusok problémaköre, tudás-intenzív konfliktusfeloldás, mechanizmus- tervezés és az  alapvető játékelméleti fogalmak és sémák. Konfliktusok kezelése versengő környezetekben. Szavazáselmélet. Szavazó protokollok és problémái. Mechanizmus-tervezés piaci paradigmában és az árverési algoritmusok. Intelligens rendszerek feladatmegosztásának piaci megközelítése.

12.   Adaptivitás elosztott kooperatív rendszerekben. Alapvető tanulási sémák. Tudáskomponensek (hiedelmek és célok, ill. eljárásmódok) tanulása. Kooperatív tanulás lehetőségei. Adaptivitás elosztott versengő rendszerekben. Tanulás versengő környezetben. Megerősítéses tanulás versengő környezetben.

13.   Aktív tanulási sémák kooperatív rendszerekben. Ember-gép együttes tanulásának sémai és a gépi tanítás paradigmája.

14.   Automatizált gépi tanulási és felfedező rendszerek. Intelligens elosztott mérőrendszerektől az intelligens „Internet of Things" (IoT) szerzorhálóig.

9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium) Előadás.
10. Követelmények

Szorgalmi időszakban: Két házi feladat sikeres elkészítése és leadása a félév végéig, amely egy terület feldolgozását jelenti.

Vizsgaidőszakban: nincs.

Osztályozás: A házi feladatra megszerzett jegyek átlaga.

11. Pótlási lehetőségek A házi feladat bemutatása a pótlási héten még lehetséges.
12. Konzultációs lehetőségek Igény esetén, megbeszélés alapján.
13. Jegyzet, tankönyv, felhasználható irodalom

Gelman, Andrew, et al. Bayesian data analysis. Vol. 2. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.

Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

14. A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka
Kontakt óra28
Félévközi készülés órákra10
Felkészülés zárthelyire 
Házi feladat elkészítése22
Kijelölt írásos tananyag elsajátítása 
Vizsgafelkészülés60
Összesen 
15. A tantárgy tematikáját kidolgozta

Dr. Antal Péter

egyetemi docens

MIT

Dr. Bolgár Bence

tud. munkatárs

MIT

Dr. Dobrowiecki Tadeusz

egyetemi tanár

MIT

Egyéb megjegyzések A tantárgy angol neve: Complex federated models in machine learning