Integration and Verification Techniques

A tantárgy neve magyarul / Name of the subject in Hungarian: Integrációs és ellenőrzési technikák

Last updated: 2016. június 22.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Software Development Specialization

Engineering Information Technology, BSc

Course ID Semester Assessment Credit Tantárgyfélév
VIMIAC04 6 2/1/0/v 4  
3. Course coordinator and department Dr. Strausz György,
Web page of the course
4. Instructors

Dr. István Majzik, MIT

Dr. György Strausz, MIT

5. Required knowledge Software technology, Software Technics, Artificial Intelligence
6. Pre-requisites
(Szakirany("AMINszoftfejlAUT", _) VAGY
Szakirany("AMINszoftfejlIIT", _) VAGY
Szakirany("AMINszoftfejlMIT", _) VAGY
Szakirany("AMIszoft", _) VAGY
Szakirany("AMIrendszfejl", _) VAGY
Szakirany("AMIrendszterv", _) VAGY

Szakirany("VIABI-SOFTWE", _) )

ÉS NEM ( TárgyEredmény( "BMEVIMIA370" , "jegy" , _ ) >= 2
TárgyEredmény("BMEVIMIA370", "FELVETEL", AktualisFelev()) > 0)

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rendek grafikus formában itt láthatók.

7. Objectives, learning outcomes and obtained knowledge The subject aims to provide an overview of a variety of information integration systems, introduces  the development and verification technics of such systems. We discuss the most common integration approches of distributed data, documents and other type of resources available on the Web. The subject deals with the semantic heterogeneity and structural problems, unveil the necessary technologies. We analyze in this framework the  approaches and technologies of the Semantic Web concept.

The subject continues with the discussion of the verification processes and the checking possibilities in the typical development phases. Among the several verification tasks we focus on the static analysis of the specifications and plans for dealing with static controls, the dynamic verification of the components, and with the tests of integration. The subject ends with the overview of the system testing methods.
8. Synopsis Lectures:

1. Information integration approaches. Methods of information integration: the role of mediators, design methods. Advantages and disadvantages of virtual and materialized approaches in information integration.

2. Virtual data integration techniques, introduction of mediator/integrator approach. Role of ontologies in resolving conceptual heterogeneity. The typical architectures of virtual integration mediators, query formulation, translation, optimization.

3. The materialized date integration (data warehouse systems / overview /), storing and querying data in a data warehouse system.

4. Integration of information of web data. The semantic web concept.

5. Application of the semantic web technologies for web data integration.

6. Information retrieval in semi-structured information sources. Internet search engines, technologies, capabilities and deficiencies.

7. Case Study: state of the art information broker systems.

8. The role of verification technology, the overview of the verification process: typical development phases, chcking points and related technologies. Traceability of the verification and supporting tools.

9. Static verification of specifications and plans: completeness, consistency, testability of  data, behavior and interface specifications.

Demonstrative examples: data storage, query services.

10. Dynamic checks of components: design approaches of specification and structure-based tests: Selecting test data by analyzing equivalence partitions and limits, combinatorial methods.

11. Usage of test quality measures.

12. Verification of component and data integration: Incremental testing methods.

13. Test data derivation using ontology and metadata models, application of the model in web 2.0 services. Scenario-based integration tests of web-based information resources integration processes.

14. Model-based methods of system level tests (overview): Generation of test data and configurations. Continuous integration.



1. Creating an ontological model of information integration (Protégé, OWL)

2. Construction of RDF databases, Linked date technology

3. Model queries (SPARQL)

4. Building and running component level tests (Junit)

5. Test coverage measurement (Codec Over)

6. Using Isolation Frameworks (Mockito, JMock)

9. Method of instruction Lectures, laboratory
10. Assessment

During the semester:

  • students shouls accomplish a midterm in the semester, the level of acceptance is 40%
  • one home project should also be completed
11. Recaps During the semester and the additional week an extra midterm opportunity provided.
12. Consultations Instructors will offer consultation possibility, in case of demand.
13. References, textbooks and resources

AnHai Doan, Alon Halevy, and Zachary Ives: Principles of Data Integration, Morgan Kaufmann, 1st edition (2012) (

G. G. Schulmeyer, G. R. MacKenzie: Verification and Validation of Modern Software-Intensive Systems. Prentice Hall, 2000.

14. Required learning hours and assignment
Contact hours56
Study during the semester14
Preparation of midterm10
Preparation of homework 
Assigned written material20
Preparation of exam20
15. Syllabus prepared by




Dr. István Majzik

Associate professor


Dr. György Strausz

Associate professor