Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Measurement Technology

    A tantárgy neve magyarul / Name of the subject in Hungarian: Méréstechnika

    Last updated: 2012. november 25.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Course ID Semester Assessment Credit Tantárgyfélév
    VIMIA206 4. 3/2/0/f 5 1/1
    3. Course coordinator and department Dr. Sujbert László,
    6. Pre-requisites
    Kötelező:
    (TárgyEredmény( "BMEVIEV2015" , "aláírás" , _ ) = -1
    VAGY TárgyEredmény( "BMEVIEV2501" , "aláírás" , _ ) = -1
    VAGY TárgyEredmény( "BMEVIEV2021" , "aláírás" , _ ) = -1
    VAGY TárgyEredmény( "BMEVIEVF005" , "aláírás" , _ ) = -1
    VAGY TárgyEredmény( "BMEVIHVA200" , "aláírás" , _ ) = -1
    VAGY TárgyEredmény( "BMEVIHVAB01" , "aláírás" , _ ) = -1 )

    ÉS NEM ( TárgyEredmény( "BMEVIMIAB01" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIMIAB01", "FELVETEL", AktualisFelev()) > 0)

    ÉS Training.Code=("5N-A7")

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    7. Objectives, learning outcomes and obtained knowledge The aim of the subject is to give insight into metrology, measurement theory, measurement technology and instrumentation. Besides the theoretical aspects, the course also prepares students for laboratory practices. Model building and problem solving skills of the students are developed. The subject focuses on the measurement of electrical quantities but emphasizes the analogies with non-electrical problems.

     

    Obtained skills and expertise:

     

    Skills related to measurement theory and technology, instrumentation.

     

    8. Synopsis 1. Basics of measurement. Measurement and modeling, sensors, bridge circuits. 2. Basics of measurement theory. Basic methods and structures. Calculation of measurement error, uncertainty. Statistical methods. Uncertainty calculation based on GUM (Guide to the Expression of Uncertainty in Measurement) 3. Measurement of signals and their main parameters. Measurement in the time and frequency domain. 4. Signal connection and conditioning. Noise sensitivity, impedance-matching, shielding. Rectifiers. Analog-to-digital and digital-to-analog converters. 5. Measurement of frequency and time. Digital counter-based instruments and their extensions. 6. Measurement of basic electric quantities. Measurement of voltage, current, energy, power, impedance. Impedance and connection modeling. Low- and high-precision methods. Bridge circuits. 7. Signal sources. Sine and function generators. Frequency synthesizers, phase-locked loops. 8. Signal analysis tools. Analog and digital oscilloscopes, spectrum analyzers. Fourier analyzers. 9. Calibration of instruments. Calibration processes. Traceability of measurement results. 10. Testing and diagnostics. Automatic instruments for testing and diagnostics. Self-calibrating and self-correcting instruments.

     

    13. References, textbooks and resources Schnell, L. (Ed.): Technology of Electrical Measurements. Wiley, 1993.
    14. Required learning hours and assignment
    Kontakt óra
    Félévközi készülés órákra
    Felkészülés zárthelyire
    Házi feladat elkészítése
    Kijelölt írásos tananyag elsajátítása
    Vizsgafelkészülés
    Összesen