Nemlineáris és robusztus irányítások

A tantárgy angol neve: Nonlinear and Robust Control

Adatlap utolsó módosítása: 2019. január 14.

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Mérnök informatikus szak, MSc képzés   

Autonóm irányító rendszerek és robotok szakirány   

Villamosmérnöki szak, MSc képzés   

Irányító és robot rendszerek szakirány   

Tantárgykód Szemeszter Követelmények Kredit Tantárgyfélév
VIIIM211 2 2/1/0/v 4  
3. A tantárgyfelelős személy és tanszék Dr. Kiss Bálint,
A tantárgy tanszéki weboldala http://www.iit.bme.hu
4. A tantárgy előadója

Dr. Kiss Bálint egyetemi docens

Dr. Harmati István egyetemi docens

5. A tantárgy az alábbi témakörök ismeretére épít irányításelmélet
6. Előtanulmányi rend
Kötelező:
NEM ( TárgyEredmény( "BMEVIIIMA10" , "jegy" , _ ) >= 2
VAGY
TárgyEredmény("BMEVIIIMA10", "FELVETEL", AktualisFelev()) > 0)

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rendek grafikus formában itt láthatók.

Ajánlott:
Robotok és irányítások elmélete
7. A tantárgy célkitűzése

A tantárgy célja, hogy a korábbi tanulmányok során az irányítástechnika területén megszerzett ismereteket a hallgatók bővítsék a gyakorlatban bevált modern irányításelméleti eredmények és a hozzájuk kapcsolódó módszertan elsajátításával a folytonos-idejű robusztus irányítások és a nemlineáris rendszerek irányítása területén.

A tantárgyat sikeresen abszolváló hallgatók képesek 1) lineáris rendszerek esetében a paraméterbizonytalanságok modellezésére, robusztus szabályozási körök szintézisére és analízisére, 2) készségszinten alkalmazni tudják a nemlineáris rendszerek tárgyalásához bevezetett elméleti és módszertani ismereteket egyes nemlineáris modellosztályok irányításában, 3) képessé válnak a tantárgy területén a kortárs irányításelméleti szakirodalom hatékony feldolgozására.

 

8. A tantárgy részletes tematikája

13 tényleges oktatási hét: 26 előadási + 13 tantermi gyakorlati óra. A gyakorlatok az elméleti előadás módszereit alkalmazási példák keretében mutatják be. Az előadások tematikája: 

  1. Robusztus irányítások rendszertechnikai felfogása. Jelek L2 , H2 és H terei, a normák számítása. Lineáris rendszerek, mint operátorok a H2 és H tereken, indukált normák.
  2. Paraméterbizonytalanságok reprezentációja, additív, multiplikatív és frekvenciafüggő bizonytalanságok. Szabályozási körök performancia kérdései. A hurokátvileti, az érzékenységi, a komplementer érzékenységi átviteli mátrixok és kívánt tulajdonságaik a zajelnyomás, a megfelelő követési tulajdonságok és a stabilitás biztosítása érdekében.
  3. Visszacsatolások struktúrái, jól meghatározottság és belső stabilitás fogalma. Kis erősítések tétele (bizonyítással). Stabilitás strukturált és strukturálatlan bizonytalanságok esetén. Loop-shaping.
  4. LFT (Linear Fractional Transformation) alakok bevezetése, Redheffer-csillag szorzat. Példák az LFT használatának bemutatására, a műveletek Matlab támogatása. Algenrai Ricatti-egyeneletek (ARE), Hamilton-mátrixok és tulajdonságai, az ARE stabilitáló megoldása és létezésének feltételei.
  5. H∞ szintézis problémák. Az optimális és szuboptimális H∞ probléma fogalma. A szuboptimális H∞ probléma megoldása. Esettanulmány robusztus irányítás tervezésére.
  6. Nemlineáris dinamikus rendszerek és vektormezők kapcsolata. Műveletek vektormezőkkel (Lie derivált, Lie szorzat), disztribúciók. Frobenius tétele.
  7. Irányíthatóság és megfigyelhetőség nemlineáris rendszerekben, kapcsolat a lineáris rendszerek irányíthatóságával és megfigyelhetőségével.
  8. Állapottér-transzformáció és állapotvisszacsatolás nemlineáris rendszereknél, kimenet relatív fokszáma.
  9. Nemlineáris rendszerek egyensúlyi pontjai és stabilitása. Az attraktor fogalma, Ljapunov-stabilitás, Ljapunov direkt és indirekt módszere, LaSalle tétele. Centrális sokaság tétele. Gyors és lassú időskálák szétválasztása nemlineáris rendszereknél.
  10. Pályatervezés és pályakövető szabályozások nemlineáris rendszerek esetén. Példarendszerek.
9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium) A tárgy előadásokból és az előadások anyagát illusztráló gyakorlatokból áll.
10. Követelmények 1 zárthelyi a szorgalmi időszakban. Az aláírás feltétele legalább elégséges osztályzat. A zárthelyi dolgozat eredménye 10% arányban beszámít a vizsgajegybe.
11. Pótlási lehetőségek

A zárthelyi a szorgalmi időszakban vagy a pótlási héten pótolható

12. Konzultációs lehetőségek Zárthelyi és vizsga előtti heteken, hallgatói igény szerint.
13. Jegyzet, tankönyv, felhasználható irodalom

Alberto Isidori: Nonlinear Control Systems. Third edition, Springer, 1995.

Kemin Zhou, John C. Doyle: Essentials of Robust Control. Prentice Hall, 1997.

14. A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka
Kontakt óra42
Félévközi készülés órákra14
Felkészülés zárthelyire16
Házi feladat elkészítése 
Kijelölt írásos tananyag elsajátítása 
Vizsgafelkészülés48
Összesen120
15. A tantárgy tematikáját kidolgozta

Dr. Kiss Bálint egyetemi docens

Dr. Harmati István egyetemi docens

Dr. Lantos Béla egyetemi tanár