Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Relativisztikus elektrodinamika

    A tantárgy angol neve: Relativistic Electrodynamics

    Adatlap utolsó módosítása: 2015. március 25.

    Budapesti Műszaki és Gazdaságtudományi Egyetem
    Villamosmérnöki és Informatikai Kar

    Villamosmérnöki Tudományok Doktori Iskola

    Informatikai Tudományok Doktori Iskola

    Választható tárgy 

    Tantárgykód Szemeszter Követelmények Kredit Tantárgyfélév
    VIHVD001   4/0/0/v 5  
    3. A tantárgyfelelős személy és tanszék dr. Gyimóthy Szabolcs,
    4. A tantárgy előadója
    Név: Beosztás: Tanszék, Int.:
    Dr. Gyimóthy Szabolcs egyetemi docens HVT
    5. A tantárgy az alábbi témakörök ismeretére épít Fizika, Elektromágneses terek, Vektorananalízis
    6. Előtanulmányi rend
    Ajánlott:
    Elektromágneses terek alapjai (VIHVA201)
    Fizika 1 (TE11AX01)
    Fizika 2 (TE11AX02)
    7. A tantárgy célkitűzése Az elektrodinamika alaptörvényeinek relativisztikus megfogalmazása; a speciális relativitáselmélet villamosmérnöki alkalmazásainak megismertetése.
    8. A tantárgy részletes tematikája

    Bevezetés (1. hét)
    Tárgykövetelmények ismertetése. A relativitáselmélet előzményei és rövid történeti áttekintése. Alapfogalmak: vonatkoztatási és koordináta-rendszer. A Galilei-féle relativitási elv: tömegpont mozgásegyenlete és Galilei-transzformáltja; az elektrodinamika hullámegyenlete és Galilei-transzformáltja. "Éterkísérletek": Michelson-Morley, Trouton-Noble, Fizeau-kísérlet, Bradley-féle aberráció; a kísérletek konklúziója; az inerciarendszer fogalma.

    A speciális relativitáselmélet alapjelenségeinek tárgyalása egyszerű matematikai eszközökkel (2-4. hét)
    Optikai Doppler-effektus, közelítés v<<c esetén, transzverzális Doppler-effektus, Ives-Stillwell kísérlet. Új időfogalmak: sajátidő, koordinátaidő; az idődilatáció értelmezése. Az egyidejűség relativitása, kauzalitás. Néhány alapmennyiség mérési elve nyugalmi rendszerben: idő, hossz, sebesség. Mozgó objektum hossza, Lorentz-kontrakció, Kennedy-Thorndike kísérlet, egyidejűségi ill. kontrakciós paradoxonok. Relativisztikus sebesség-összeadás; a Fizeau-kísérlet magyarázata. A mozgásegyenlet relativisztikus alakja: impulzusmegmaradás, relativisztikus impulzus, Newton II. axiómája. Célszerűtlen ill. ódivatú értelmezések: nyugalmi és mozgási tömeg, longitudinális és transzverzális tömeg; Kaufmann-kísérlet. Tömeg és energia: tömegpont kinetikus energiája; nyugalmi energia; zárt rendszer tömege és energiája (példák). Energia és impulzus kapcsolata; nulla tömegű részecskék. Einstein gondolatkísérlete az E=mc^2 összefüggés belátására.

    A Lorentz-transzformáció és a téridő (5-6. hét)
    A Lorentz-transzformáció formuláinak levezetése. A Minkowsky-féle téridő: négyestávolság (intervallum), metrika, "Lorentz-forgatás" (3D-analógia); téridő-intervallumok (eseménypárok) osztályozása. Téridő-diagramok használata: világvonal, fénykúp, indikatrix; a Lorentz-transzformáció, a hosszkontrakció és az idődilatáció szemléltetése. Az ikerparadoxon szemléletes feloldása. Relativisztikus "egyenletesen gyorsuló" mozgás, pillanatnyi nyugalmi rendszer, eseményhorizont.

    Elektrodinamika mozgó vonatkoztatási rendszerekben (7. hét)
    Bevezető példa: egy áram járta vezetővel párhuzamosan haladó ponttöltésre ható erő vizsgálata két nézőpontból. A Maxwell-egyenletek transzformálása; térvektorok és forrásmennyiségek transzformált alakja; "félig relativisztikus" és nem relativisztikus közelítések.

    Vektor- és tenzorszámítás összefoglalása (8. hét)
    Koordináta-rendszerek osztályozása, koordináta-transzformációk általános jellemzői; képzetes időkoordináta bevezetése; euklideszi norma és négyestávolság; a Lorentz-transzformáció mátrixa, az együtthatók tulajdonságai, Einstein-konvenció az összegzésre. Négyesvektorok: definíció, példák (négyes sebesség, négyes áramsűrűség). Négyestenzorok. Vektor- és tenzoralgebra: belső, külső és váltószorzat; váltótenzor duálja, a Levi-Civita-szimbólum. Vektor- és tenzoranalízis: skalármező gradiense, vektormező divergenciája, rotációja és gradiense, tenzormező divergenciája és rotációja, a d'Alembert-operátor.

    Az elektrodinamika összefüggéseinek megfogalmazása négyes mennyiségekkel (9-10. hét)
    Elektromágneses tér vákuumban: forrásmennyiségek és a folytonossági egyenlet; konvektív áram; a töltés invarianciája; térintenzitás-tenzor, Maxwell-egyenletek; négyespotenciál; erősűrűség, négyeserő, energia-impulzus tenzor. Elektromágneses tér közegekben: a gerjesztettségi és a polarizáció-tenzor; anyagjellemzők; a differenciális Ohm-törvény; energia-impulzus tenzor.

    Speciális relativitáselmélet a villamosmérnöki gyakorlatban (11-14. hét)
    Néhány alkalmazás: töltött részecske mozgásegyenlete; egyenletesen mozgó ponttöltés tere; a hullámszám négyesvektor és a Doppler-effektus; Wilson kísérlete; unipoláris indukálás; reflexió mozgó tükörről; síkhullám szóródása forgó szigetelő gömbön. Relativisztikus hatások figyelembe vétele numerikus térszámító programok használata során: konstitúciós egyenletek mozgó közegben; folytonossági feltételek mozgó objektum peremén. Néhány relativisztikus hatáson alapuló eszköz működése.

    9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium) Tantermi előadás és számítógépes bemutató.
    10. Követelmények
    a.) A szorgalmi időszakban: aláírás. Feltétele egy kijelölt, illetve személyre szabott házi feladat megfelelő szintű kidolgozása, amely lehet többek között számítási feladat megoldása vagy szakirodalom feldolgozása.
    b.) A vizsgaidőszakban: szóbeli vizsga választott tétel alapján.
    c.) Elővizsga: megbeszélés szerint.

    11. Pótlási lehetőségek A házi feladat a pótlási héten, különeljárási díj ellenében pótolható.
    12. Konzultációs lehetőségek A szorgalmi időszakban a tárgy oktatójának heti fogadóóráján (a fogadóóra időpontja a tanszék honlapján megtalálható); a vizsgaidőszakban egyénileg, előzetesen megbeszélt időpontban.
    13. Jegyzet, tankönyv, felhasználható irodalom

    Előadói óravázlatok

    Hraskó Péter: A relativitáselmélet alapjai (elektronikusan is), Typotex Kiadó, 2009.

    Simonyi Károly: A fizika kultúrtörténete, Akadémiai Kiadó, 2011.

    Fodor György: Relativisztikus elektrodinamika (kézirat)

    Giber-Sólyom-Kocsányi: Fizika mérnököknek I-II, Műegyetemi Kiadó, 1999.

    Tevan György: Relativisztikus elektrodinamika röviden, Typotex Kiadó, 2013.

    Hraskó Péter: Relativitáselmélet (elektronikusan is), Typotex Kiadó, 2002.

    Feynman-Leighton-Sands: Mai fizika, 2. és 6. kötet, Műszaki Könyvkiadó, 1968.

    Jean Van Bladel: Relativity and Engineering, Springer Berlin, 1984.

    14. A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka
    Kontakt óra 56
    Félévközi készülés órákra 20
    Felkészülés zárthelyire  
    Házi feladat elkészítése 20
    Kijelölt írásos tananyag elsajátítása 24
    Vizsgafelkészülés 30
    Összesen 150
    15. A tantárgy tematikáját kidolgozta
    Név: Beosztás: Tanszék, Int.:
    Dr. Gyimóthy Szabolcs egyetemi docens HVT