Introduction to Electromagnetic Fields

A tantárgy neve magyarul / Name of the subject in Hungarian: Elektromágneses terek alapjai

Last updated: 2023. április 13.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Electrical Engineering BSc program
Course ID Semester Assessment Credit Tantárgyfélév
VIHVAC03 5 2/1/0/v 4  
3. Course coordinator and department Dr. Gyimóthy Szabolcs,
Web page of the course http://hvt.bme.hu/index.php/oktatas/bsc/elektromagneses-terek-alapjai-bmevihvac03
4. Instructors
Name Position Department
PÁVÓ, József full professor Broadband Infocom. and Electromagnetic Theory
GYIMÓTHY, Szabolcs full professor Broadband Infocom. and Electromagnetic Theory
BILICZ, Sándor assoc. prof. Broadband Infocom. and Electromagnetic Theory
BOKOR, Árpád honorary assoc. prof. Broadband Infocom. and Electromagnetic Theory
5. Required knowledge

Mathematics: linear algebra, matrix calculus, complex algebra, differential and integral calculus, differential equations, vector calculus. Signals and systems: circuit theory, two-ports, frequency domain analysis.

6. Pre-requisites
Kötelező:
(TargyEredmeny("BMETE90AX09" , "jegy" , _ ) >= 2 ÉS
(TargyEredmeny("BMETE11AX02" , "jegy" , _ ) >= 2 VAGY
TargyEredmeny("BMETE11AX22" , "jegy" , _ ) >= 2 ) )

ÉS NEM ( TárgyEredmény( "BMEVIHVA201" , "jegy" , _ ) >= 2
VAGY
TárgyEredmény("BMEVIHVA201", "FELVETEL", AktualisFelev()) > 0
VAGY
TárgyEredmény( "BMEVIHVA204" , "jegy" , _ ) >= 2
VAGY
TárgyEredmény("BMEVIHVA204", "FELVETEL", AktualisFelev()) > 0)

ÉS (Training.Code=("5N-A7") VAGY Training.Code=("5N-A7H") VAGY Training.Code=("5NAA7"))

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

7. Objectives, learning outcomes and obtained knowledge

The course teaches the fundamentals of classical electrodynamics in an engineering approach. Besides the main principles, the most important fields of engineering applications as well as some analysis methods are discussed. The lectures are complemented with classroom practices.

8. Synopsis

Part I. Fundamental laws

  • Measurable global quantities of electromagnetism
  • Scalar and vector fields of electromagnetism
  • The system of Maxwell's equations
  • Electromagnetic fields in materials
  • Interface conditions
  • Energy balance of the electromagnetic field
  • Forces in the electromagnetic field
  • Uniqueness of the solution of Maxwell's equations
  • Classification of problems

Part II. Static fields

  • Scalar potential and Laplace-Poisson equation of electrostatics
  • Electrodes, capacitances
  • Field of the electric dipole
  • Method of images
  • The finite difference method
  • Current flow problems and the electrostatics analogy
  • Grounding, step voltage
  • Static magnetic fields, Biot-Savart law
  • Self and mutual inductance
  • Induction phenomena
  • Lumped circuits

Part III. Transmission lines

  • Telegraph equations
  • Helmholtz-equation and its general solution
  • Voltage and current distribution for specific loads (matched load, open end, etc.)
  • Standing waves, transmission line as resonant circuit
  • Circuit equivalents of the transmission line
Part IV. Wave phenomena
  • Wave equations (homogeneous and inhomogeneous)
  • Helmholtz equation for plane waves, the transmission line analogy
  • Reflection and refraction, polarised waves
  • Plane waves in ideal dielectrics
  • Plane waves in conductors, the skin effect
  • Elementary electric dipole antenna
  • Rectangular waveguides
9. Method of instruction

14 weeks of classes: 28 hours of lectures, 14 hours of classroom practices.

10. Assessment
  1. During the teaching period: one midterm.
  2. During the exam period: oral exam
  3. Pre-exam: not available
11. Recaps

The midterm can be repeated once.

12. Consultations Consultation hours are offered regularly by all lecturers of the subject (as scheduled on the homepage).
13. References, textbooks and resources

K. Simonyi, Foundations of Electrical Engineering, Pergamon, 1963.
D.K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1989.
L. Solymar, Lectures on Electromagnetic Theory: A Short Course for Engineers, Oxford University Press, 1976.
J.D. Jackson, Classical Electrodynamics, Wiley, 1999.

14. Required learning hours and assignment
Contact hours42
Preparation for contact hours14
Preparation for the midterm16
Homework assignments
Home readings10
Preparation for the exam38
Total workload120
15. Syllabus prepared by
Name Position Department
GYIMÓTHY, Szabolcs full professor Broadband Infocom. and Electromagnetic Theory
PÁVÓ, József full professor Broadband Infocom. and Electromagnetic Theory