Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Introduction to Electromagnetic Fields

    A tantárgy neve magyarul / Name of the subject in Hungarian: Elektromágneses terek alapjai

    Last updated: 2017. június 28.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Electrical Engineering BSc program
    Course ID Semester Assessment Credit Tantárgyfélév
    VIHVAC03 5 2/1/0/v 4  
    3. Course coordinator and department Dr. Gyimóthy Szabolcs, Szélessávú Hírközlés és Villamosságtan Tanszék
    Web page of the course http://hvt.bme.hu/index.php/oktatas/bsc/elektromagneses-terek-alapjai-bmevihvac03
    4. Instructors
    Name Position Department
    PÁVÓ, József full professor Broadband Infocom. and Electromagnetic Theory
    GYIMÓTHY, Szabolcs assoc. prof. Broadband Infocom. and Electromagnetic Theory
    BILICZ, Sándor senior lecturer Broadband Infocom. and Electromagnetic Theory
    SZABÓ, Zsolt assoc. prof. Broadband Infocom. and Electromagnetic Theory
    5. Required knowledge

    Mathematics: linear algebra, matrix calculus, complex algebra, differential and integral calculus, differential equations, vector calculus. Signals and systems: circuit theory, two-ports, frequency domain analysis.

    6. Pre-requisites
    Kötelező:
    (TargyEredmeny("BMETE90AX09" , "jegy" , _ ) >= 2 ÉS
    (TargyEredmeny("BMETE11AX02" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMETE11AX22" , "jegy" , _ ) >= 2 ) )

    ÉS NEM ( TárgyEredmény( "BMEVIHVA201" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIHVA201", "FELVETEL", AktualisFelev()) > 0
    VAGY
    TárgyEredmény( "BMEVIHVA204" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIHVA204", "FELVETEL", AktualisFelev()) > 0)

    ÉS (Training.Code=("5N-A7") VAGY Training.Code=("5N-A7H") VAGY Training.Code=("5NAA7"))

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    7. Objectives, learning outcomes and obtained knowledge

    The course teaches the fundamentals of classical electrodynamics in an engineering approach. Besides the main principles, the most important fields of engineering applications as well as some analysis methods are discussed. The lectures are complemented with classroom practices.

    8. Synopsis

    Part I. Fundamental laws

    • Measurable global quantities of electromagnetism
    • Scalar and vector fields of electromagnetism
    • The system of Maxwell's equations
    • Electromagnetic fields in materials
    • Interface conditions
    • Energy balance of the electromagnetic field
    • Forces in the electromagnetic field
    • Uniqueness of the solution of Maxwell's equations
    • Classification of problems

    Part II. Static fields

    • Scalar potential and Laplace-Poisson equation of electrostatics
    • Electrodes, capacitances
    • Field of the electric dipole
    • Method of images
    • The finite difference method
    • Current flow problems and the electrostatics analogy
    • Grounding, step voltage
    • Static magnetic fields, Biot-Savart law
    • Self and mutual inductance
    • Induction phenomena
    • Lumped circuits

    Part III. Transmission lines

    • Telegraph equations
    • Helmholtz-equation and its general solution
    • Voltage and current distribution for specific loads (matched load, open end, etc.)
    • Standing waves, transmission line as resonant circuit
    • Circuit equivalents of the transmission line
    Part IV. Wave phenomena
    • Wave equations (homogeneous and inhomogeneous)
    • Helmholtz equation for plane waves, the transmission line analogy
    • Reflection and refraction, polarised waves
    • Plane waves in ideal dielectrics
    • Plane waves in conductors, the skin effect
    • Elementary electric dipole antenna
    • Rectangular waveguides
    9. Method of instruction

    14 weeks of classes: 28 hours of lectures, 14 hours of classroom practices.

    10. Assessment
    1. During the teaching period: one midterm.
    2. During the exam period: oral exam
    3. Pre-exam: not available
    11. Recaps

    The midterm can be repeated once.

    12. Consultations Consultation hours are offered regularly by all lecturers of the subject (as scheduled on the homepage).
    13. References, textbooks and resources

    K. Simonyi, Foundations of Electrical Engineering, Pergamon, 1963.
    D.K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1989.
    L. Solymar, Lectures on Electromagnetic Theory: A Short Course for Engineers, Oxford University Press, 1976.
    J.D. Jackson, Classical Electrodynamics, Wiley, 1999.

    14. Required learning hours and assignment
    Contact hours42
    Preparation for contact hours14
    Preparation for the midterm16
    Homework assignments
    Home readings10
    Preparation for the exam38
    Total workload120
    15. Syllabus prepared by
    Name Position Department
    GYIMÓTHY, Szabolcs assoc. prof. Broadband Infocom. and Electromagnetic Theory
    PÁVÓ, József full professor Broadband Infocom. and Electromagnetic Theory