Hálózatok és rendszerek II.

A tantárgy angol neve: Networks and Systems II.

Adatlap utolsó módosítása: 2006. július 1.

Tantárgy lejárati dátuma: 2015. január 31.

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Villamosmérnöki Szak

Tantárgykód Szemeszter Követelmények Kredit Tantárgyfélév
VIEV2015 3. 4/2/0/v 8 1/1
3. A tantárgyfelelős személy és tanszék Dr. Veszely Gyula,
4. A tantárgy előadója

magyar nyelven:

Név:

Beosztás:

Tanszék, Int.:

Dr. Veszely Gyula

egy. tanár

Elméleti Villamosságtan Tsz.

Dr. Sebestyén Imre

egy. docens

Elméleti Villamosságtan Tsz.

Dr. Iványi Miklósné

egy. docens

Elméleti Villamosságtan Tsz.

Angolul:

Név:

Beosztás:

Tanszék, Int.:

Barbarics Tamás

egy. tanársegéd

Elméleti Villamosságtan Tsz.

Gyimóthy Szabolcs

egy. tanársegéd

Elméleti Villamosságtan Tsz.

5. A tantárgy az alábbi témakörök ismeretére épít

Matematika, Hálózatok és rendszerek 1.

6. Előtanulmányi rend
Kötelező:
TárgyEredmény( "BMEVIEV1014" , "jegy" , _ ) >= 2 VAGY TárgyEredmény( "BMEVIEV1019" , "jegy" , _ ) >= 2 VAGY TárgyEredmény( "BMEVIEV1505" , "jegy" , _ ) >= 2

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rendek grafikus formában itt láthatók.

Ajánlott:

Hálózatok és rendszerek 1. kredit

7. A tantárgy célkitűzése

A tantárgy célja a diszkrét idejű és a Kirchhoff típusú hálózatokat és rendszereket leíró egyenletek felírása és azok megoldási módszereinek áttekintése, a megoldások értelmezése és alkalmazása.

8. A tantárgy részletes tematikája

A lineáris Kirchhoff tipusú hálózat szinuszos állandósult állapota. Teljesítmények. Helyettesítő generátorok. Teljesítményillesztés. Háromfázisú hálózatok. Az átviteli karakterisztika és ábrázolása. A Nyquist és a Bode diagram fogalma. Periodikus gerjesztéshez tartozó gerjesztett válasz Fourier-sorának számítása. Teljesítmény. Jelek spektrális előállítása. Sávszélességek, alakhű jelátvitel. Sávkorlátozott és időkorlátozott jelek. Laplace-transzformáció és inverze. Átviteli függvény, pólus-zérus elrendezés. Hálózatszámítás a komplex frekvenciatartományban Laplace-transzformációval. Rendszerjellemző függvények áttekintése. Mindentáteresztő és minimálfázisú rendszer. Diszkrét idejű jel, DI rendszer, állapotváltozós leírás, rendszeregyenlet, hálózat. Megoldás szabad és gerjesztett összetevőre bontással. Az impulzusválasz. Gerjesztés-válasz stabilitás. Szinuszos gerjesztés, átviteli karakterisztika. Periodikus gerjesztés, diszkrét Fourier sor. A diszkrét Fourier transzformáció és néhány tétele. A z-transzformáció és tételei. Átviteli függvény. Analízis a komplex frekvencia tartományban. Rendszerjellemző függvények. Folytonos idejű jelek és rendszerek diszkrét idejű szimulációja. Nemlineáris rezisztív hálózatok. Nemlineáris dinamikus hálózatok. Dinamikus komponensek. A hálózati egyenletek kanonikus alakja. Munkaponti linearizálás. Tartományi linearizálás. Numerikus megoldási módszerek.

9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium)

- 4 óra/hét előadás évfolyamcsoportonként,

- 2 óra/hét gyakorlat tanulókörönként, ill. a félévben 3 alkalommal számítógépes laboratórium

- 2 óra/hét konzultáció a tanszéken (a hallgatóknak fakultatív)

10. Követelmények

a) A félévközi ellenőrzés rendje:

A gyakorlatokon ellenőrizzük a jelenlétet, 4 alkalommal kiszárthelyit íratunk, melyeket 1-5 ponttal értékelünk. Két házi feladatot kell megoldani.

1. feladat kiadás: 4. hét, beadás: 8. hét

2. feladat kiadás: 8. hét, beadás: 13. hét

Kiszárthelyi pótlására nincs lehetőség, a meg nem írt zárthelyit 1 eredményűnek tekintjük. Határidő elmulasztása esetén csak különeljárási díj befizetésével adható be házi feladat.

Az előadásokon való részvételre nincs előírás.

Az aláírás megszerzésének feltételei:

- a 3 legnagyobb pontszámú kiszárthelyi átlaga legalább 2,00,

- a két házi feladatot legkésőbb a szorgalmi időszak utolsó előtti hetében a hallgató beadta, és a gyakorlatvezető a szorgalmi időszak végéig elfogadta.

A beadás feltétele: minden kötelező részfeladatra érdemi megoldás van.

Az elfogadás feltétele: minden kötelező részfeladatra elvi hiba nélküli megoldás van, és az eredményeknek legalább 60%-a numerikusan is helyes.

Azok részére, akik az aláírást a szorgalmi időszak végéig nem szerezték meg, lehetőség van pótlásra a vizsgaidőszak első két hetében a tanszék által kitűzött egy alkalommal. Nem megfelelő zárthelyi pontszám esetén pótzárthelyit kell írni, amelyen legalább elégséges eredményt kell elérni, házi feladat elmaradása esetén az elfogadhatóra kijavított házi feladatot a kiírt időpont előtt legalább két munkanappal be kell adni. Nem pótolható vizsgaidőszakban az a házi feladat, amelyet a szorgalmi időszakban egyszer sem adtak be.

b) Vizsga:

A vizsgára bocsátás feltétele az aláírás megléte.

A vizsga írásbeli és szóbeli részből áll. Az írásbelin szerezhető maximális pontszám 30. Az írásbeli eredménye 14,5 pont alatt elégtelen, ez nem jogosít szóbeli vizsgára, a vizsga minősítése elégtelen (1). A 14,5-30 pontos írásbeli szóbeli vizsgára jogosít, 16 pontostól elégséges, 19 pontostól közepes, 22 pontostól jó, 25 pontostól jeles. A végső osztályzat az írásbeli eredményéből kiindulva a szóbelin alakul ki.

13. Jegyzet, tankönyv, felhasználható irodalom

Dr.Fodor György: Hálózatok és rendszerek analízise 2. rész (55014)

Dr.Fodor György: Hálózatok és rendszerek analízise 3. rész (55015)

Dr.Fodor György: Hálózatok és rendszerek analízise 1. (55016)

Veszely Gyula: Villamosságtan példatár. 3. füzet (51434)

Dr.Fodor Gy.(szerk.): Villamosságtan példatár. TKV 44555

15. A tantárgy tematikáját kidolgozta

Név:

Beosztás:

Tanszék, Int.:

dr.Sebestyén Imre

egy.docens

Elméleti Villamosságtan Tsz.