Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Technológiai folyamatmodellezés

    A tantárgy angol neve: Modelling of Technology Processes

    Adatlap utolsó módosítása: 2014. szeptember 19.

    Budapesti Műszaki és Gazdaságtudományi Egyetem
    Villamosmérnöki és Informatikai Kar

    Villamosmérnök Szak MSc képzés
    Mikroelektronika és Elektronikai Technológia főspecializáció

    Tantárgykód Szemeszter Követelmények Kredit Tantárgyfélév
    VIETMA01 2 2/1/0/v 4  
    3. A tantárgyfelelős személy és tanszék Dr. Illés Balázs György, Elektronikai Technológia Tanszék
    4. A tantárgy előadója

    Név:

    Beosztás:

    Tanszék, Int.:

    Dr. Illés Balázs

    egyetemi docens

    Elektronikai Technológia Tsz

    Hurtony Tamás

    adjunktus

    Elektronikai Technológia Tsz

    5. A tantárgy az alábbi témakörök ismeretére épít Matematika, Fizika, Elektronikai technológia és Anyagtudomány
    6. Előtanulmányi rend
    Kötelező:
    NEM ( TárgyEredmény( "BMEVIETM241" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIETM241", "FELVETEL", AktualisFelev()) > 0)

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    Ajánlott:
    -
    7. A tantárgy célkitűzése

    A tantárgy célja használható, kreatív tudás átadása a hallgatóknak az elektronikai technológiában leggyakrabban előforduló fizikai, kémiai, fizikai-kémiai, elektrokémiai jelenségek modellezésének és szimulációjának területén. Megismerteti a hallgatókkal a hasonlóságelmélet, a modellezés, valamint a modellezés és szimuláció matematikai alapjait, történetét és kapcsolatát a természetes emberi gondolkodással, ezáltal jelentős mértékben fejleszti a modellalkotási, elvonatkoztatási készséget. Betekintést ad a különböző hatékony számítógépes szimulációs módszerekbe, beleértve a soft-computing módszereket is. Részletesen – a matematikai alapok részletezésével és az elektroniakai technológia gyártási folyamataiból vett szemléltető példák segítségével – bemutatja a különböző természeti jelenségek megjelenését a technológiában, ezáltal a korábban elsajátított elméleti tudás jobb megértését, elmélyítését segíti elő. A tantárgy további célja a hallgatók modellezési készségének és a modellezés és szimuláció segítségével történő probléma-megoldási készségének fejlesztése valós modellezési problémák bemutatásának segítségével. A hallgatók ilyen módon elsajátítják az elektronikai gyártásban előforduló – méréssel vagy más gyakorlati úton nem felderíthető – problémák megoldását, kezelését.

    A tantárgy követelményeit eredményesen teljesítő hallgatóktól elvárható, hogy:

    • legyenek tisztában a modellezés és szimuláció alapvető fogalmaival, céljaival,
    • legyenek tisztában a hasonlóságelmélet alapjaival,
    • áttekintésük legyen a modellek csoportosításáról, a szimulációk fajtáiról, a hatékony szimulációs eszközökről,
    • képesek legyenek az elektronikai technológiában előforduló egyes fizikai, kémiai jelenségek modelljét felállítani,
    • legyenek tisztában a tárgyalt természeti jelenségek leírásához szükséges matematikai alapokkal,
    • ismerjék a tárgyalt jelenségek fizikai alapjait,
    • ismerjék és alkalmazni tudják a tárgyalt numerikus módszereket,
    • áttekintésük legyen a modern és hatékony célszoftverekről,
    • legyenek tisztában a modellezés és szimuláció céljaival és szerepével az elektronikai technológia területén,
    • legyenek képesek modell készítésére egyszerűbb – az elektronikai gyártásból vett –  valós problémákról, valamint legyenek képesek a szimulációs eredmények felhasználására a problémamegoldásban és paraméterek optimalizálásában.

     

    8. A tantárgy részletes tematikája

    Bevezetés a modellezésbe:

    A modellezés alapjainak bemutatása, története. Alapfogalmak. Bevezetés a modellezésbe: a modellezés fogalma, célja, kapcsolata a természetes emberi gondolkodással. A hasonlóság, hasonlósági reláció fogalma, szerepe a gondolkodásban. A modellezés fejlődése, betekintés a modern modellezésbe és szimulációba. Modellek csoportosítása több szempont szerint, a gyártási folyamatok modellezésének elhelyezése.

    A modellalkotás folyamata:

    A modellalkotás folyamata, annak részletei, nehézségei, buktatói. A modellalkotás folyamatának, lépéseinek részletes bemutatása. A probléma felismerése, megfogalmazása. A kiemelés és elvonatkoztatás fontosságának bemutatása. Szimulációk fajtái, elméleti leírásuk. A megoldás folyamatának részletei: direkt, indirekt, induktív megoldás. Példák az elektronikai technológia folyamataiból: egy valós probléma rendkívül komplex és összetett – a megfelelő részletek kiemelésének bemutatása, a hallgatók ezen elvonatkoztató képességének fejlesztése, a modellek felállításának bemutatása.

    Matematikai és fizikai alapok:

    Az elektronikai technológiában megjelenő természeti jelenségek matematikai és fizikai alapjai.

    Matematikai alapok: a matematikai leírás és ennek részei. Numerikusszámítások (differenciálás, integrálás). Lineáris és nem lineáris egyenletek megoldása. A matematikai modell megoldásának folyamata analitikus, numerikus és kísérleti esetben. Differenciálegyenletek szerepe, fajtái, bemutatása (szemléletesen, a technológia folyamatianak gyakorlati példáin keresztül). Modellek csoportosítása a leíró differenciálegyenletek szerint.  A szimuláció gyakorlati lehetőségeinek bemutatása. Számítógépes szimuláció fogalma. Számítógépes modellezés típusai és azok matematikai alapjai: véges differencia, véges elem, neurális háló stb. A különböző módszerek előnyei és hátrányai. Számítógépes modell létrehozásának menete. Kapcsolat a numerikus leírás és a valóság között, az egyes megoldások hibái, stabilitása. Az egyes megoldások alkalmazhatósága a technológiai folyamatok modellezésre.

    Fizikai alapok: fizikai, kémiai, fizikai-kémiai és elektrokémiai törvények, összefüggések megjelenése a technológiai folyamatokban. A fizikai törvények leírása differenciálegyenletekkel, szemléltető példák. Valós folyamatok, rendszerek: több jelenség egyidejű megjelenése, a törvények „egymásba kapcsolódása”. Gyakorlati példák kapcsolt folyamatokra a technológiai gyártásból: hőterjedés-termomechanika, hővezetés-diffúzió, gázok áramlása-hőterjedés, stb.

    Modellezési példák magas szintű programozási nyelveken:

    A már megismert elméleti alapok, numerikus módszerek elmélyítése saját programok írásával

    Egyszerű modellek implementálásának folyamata (C nyelven, illetve Matlab környezetben), az elsajátított elméleti alapok gyakorlati felhasználása. Saját fejlesztésű programok implementálása azokra a speciális gyakorlati esetekre, amelyeknél a célszoftverek nem használhatóak. Szimulációk futtatása, szimulációs eredmények értelmezése, értékelése. A célszoftverek és a saját fejlesztésű programok összevetése gyakorlati példákon keresztül: a megfelelő megoldás kiválasztásának szempontjai.

    Modellezés célszoftverek segítségével:

    A  modern, hatékony modellező célszoftverek megismerése. A technológia folyamatainak vizsgálatára alkalmas modellek készítésének folyamata célszoftverek segítségével. Az egyes szoftverek előnyeinek, hátrányainak, alkalmazási körének bemutatása. Matlab PDE toolbox, Simulink, Femlab (Comsol Multiphysics), freeware szoftverek. A megfelelő modellezőeszköz kiválasztásáank szempontjai a valós gyártási problémák hatékony, gyors megoldásához. Szimulációk futtatása, az eredmények értelmezése, kiértékelése.

    Gyakorlati tematika:

    Az elektronikai technológiában megjelenő jelenségek modellezése, a modellezés céljainak bemutatása, esettanulmányok:

    • MATLAB program megismerése
    • Újraömlesztéses forrasztás, gázok áramlása reflow kemencében
    • Forrasztott kötés kialakulásának mechanizmusa, forrasz meniszkusz képződés
    • Lézeres megmunkálás modellezése: abláció, forrasztás, hegesztés, vágás
    • Anyagbeoldódás modellezése Kinetikus Monte Carlo szimulációval
    • Hőmérséklet hatására történő deformáció, mechanikai feszültség és modellek
    • Gőzfázisú forrasztó kemence modellezése MATLAB környezetben 
    9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium) előadás és gyakorlat
    10. Követelmények

    A szorgalmi időszakban:

    Az aláírás megszerzésének feltétele a kiadott házi feladat sikeres elkészítése, valamint egy zárthelyi dolgozat sikeres teljesítése.

    A vizsgaidőszakban: A tantárgy szóbeli vizsgával zárul.

    11. Pótlási lehetőségek A szorgalmi időszakban és a pótlási héten lehetőséget adunk a nagyzárthelyi pótlására. További irányadó a mindenkori TVSZ intézkedése.
    12. Konzultációs lehetőségek

    Igény szerint, az előadókkal és a feladatot kiadó konzulenssel egyeztetett időpontban folyamatosan.

    13. Jegyzet, tankönyv, felhasználható irodalom

    A tantárgy jegyzete: Illés Balázs és Sinkovics Bálint: Technológiai Folyamatmodellezés, BME printer, sz.: 2014

     

    További felhasználható irodalmak:

    Bernard P. Zeigler, Tag Gon Kim Herbert Praehofer: Theory of modelling and simulation, Academic Press, 2000 (second edition)

    Won Young Yang, Wenwu Cao, Tae-Sang Chung, John Morris: Applied Numerical Methods Using MATLAB, Wiley, 2005

    Stanley J. Farlow: Partial Differential Equations for Scientists and Engineers, Dover, 1982

    David S. Burnett: Finite element analysis, Addison-Wesley, 1988

    14. A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka
    Kontakt óra42
    Félévközi készülés órákra-
    Felkészülés zárthelyire16
    Házi feladat elkészítése16
    Kijelölt írásos tananyag elsajátítása-
    Vizsgafelkészülés46
    Összesen120
    15. A tantárgy tematikáját kidolgozta

    Név:

    Beosztás:

    Tanszék, Int.:

    Dr. Illés Balázs

    egyetemi docens

    Elektronikai Technológia Tsz