Applied Photonics

A tantárgy neve magyarul / Name of the subject in Hungarian: Fotonikai eszközök és alkalmazásuk

Last updated: 2018. február 25.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
PhD elective subject
Course ID Semester Assessment Credit Tantárgyfélév
VIETD224   4/0/0/v 5  
3. Course coordinator and department Dr. Hurtony Tamás József,
4. Instructors

Name:

Affiliation:

Department:

Dr. Tamás Hurtony

associate professor

Department of Electronics Technology

Dr. Bálint Pődör

associate professor

Department of Electronics Technology

5. Required knowledge Physics, Electronics technology and material science. 
6. Pre-requisites
Kötelező:
NEM (TárgyEredmény("BMEVIETMA06", "jegy", _) >= 2
VAGY
TárgyEredmény("BMEVIETMA06", "felvétel", AktualisFelev()) > 0)

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

Ajánlott:
Due to synopsis overlapping those who fulfilled the following course are expelled: 
Photonics Devices (VIETMA06)

7. Objectives, learning outcomes and obtained knowledge
The primary objective is to introduce and discuss the operational principles of commonly applied devices which are based on the light material interaction. 
Learning outcomes and obtained knowledge: General knowledge about the basic physical properties of light and propagation of electromagnetic waves, operation of passive optical components, characteristics of non-coherent light sources, the operation principles and conditions of lasers, discussion f of common types of laser, basic properties of optical materials, operation principles of light sensor and photodetectors. general discussion of photometric and radiometric quantities, characteristics of imaging sensors, operation  principles.   

8. Synopsis
1 General introduction; fundamental physical properties of a light, principle of electromagnetic wave propagation.  
2 Passive and active optical components 
3 Non-coherent light sources I. Thermal and luminescent radiators, Electroluminescent radiators and light emitting diodes, Photodetectors 
4 Introduction into coherent light sources. Operation principles of lasers. Cathegorization of lasers according to the active medium.
5 Solid state lasers and their applications. operation principle of laser diodes and applications 
6 Physical properties of optical materials. Optical glasses and their properties 
7 Manufacturing of optical crystals and their properties  
8 Optical thin layers, Optical components: modulators, deflectors 
9 Optical components polarizators, filters, non-linear optics 
10 Optical switches, Magnetooptical, acoustooptical devices
11 Polymers and liquid crystals. Liquid crystal devices 
12 Displays 
13 Optical data transmission, optical fibers 
14 CMOS and CCD detectors 

9. Method of instruction Lecture and seminars. 
10. Assessment
Mid-term period: successful fulfillment of mid-term exams between the 8-11st week of the semester.
Examination period: Oral exam.

11. Recaps

Any of the mid-term exams might be re-taken during the supplementary week. 

12. Consultations

Continuously according to prior discussion with the instructor. 

13. References, textbooks and resources

Safa O. Kasap , Optoelectronics & Photonics: Principles & Practices, 2nd Edition

14. Required learning hours and assignment
Kontakt óra28
Készülés előadásokra32
Készülés zárthelyire45
Házi feladat elkészítése-
Önálló tananyag-feldolgozás-
Vizsgafelkészülés45
Összesen150
15. Syllabus prepared by

Name:

Affiliation:

Department:

Dr. Tamás Hurtony

associate professor

Department of Electronics Technology

Dr. László Jakab

Professor

Department of Electronics Technology

Dr. Bálint Pődör

associate professor

Department of Electronics Technology