Smart Systems Design Laboratory

A tantárgy neve magyarul / Name of the subject in Hungarian: Smart Systems Design Laboratory

Last updated: 2017. június 21.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Branch of Electrical Engineering
MSc
Smart Systems Integration specialization

Course ID Semester Assessment Credit Tantárgyfélév
VIEEMB00 3 0/0/2/f 2  
3. Course coordinator and department Dr. Szabó Péter Gábor,
4. Instructors

Name:

Affiliation:

Department, institute:

Dr. Péter Gábor Szabó

Associate professor

Department of Electron Devices

Dr. Ferenc Ender

Assistant professor

Department of Electron Devices

Dr. Péter Horváth

Assistant professor

Department of Electron Devices

Gábor Takács

Assistant lecturer

Department of Electron Devices

5. Required knowledge

Physics, microelectronics, electronics digital technic, system level design, sensors and actuators

6. Pre-requisites
Kötelező:
TárgyEredmény( "BMEVIEEMA04" , "jegy" , _ ) >= 2
ÉS
TárgyEredmény( "BMEVIEEMA05" , "jegy" , _ ) >= 2
ÉS
TárgyEredmény( "BMEVIEEMA06" , "jegy" , _ ) >= 2

ÉS NEM ( TárgyEredmény( "BMEVIEEM164" , "jegy" , _ ) >= 2
VAGY
TárgyEredmény("BMEVIEEM164", "FELVETEL", AktualisFelev()) > 0)

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rendek grafikus formában itt láthatók.

Ajánlott:

The subject cannot be chosen unless the credits have been obtained for the following subjects:

BMEVIEEMA04

Fundamentals of Smart Systems

BMEVIEEMA05

System Level Design

BMEVIEEMA06

Áramköri környzezet kialakítása

7. Objectives, learning outcomes and obtained knowledge

The laboratory practice covers the complete design flow of IC and MEMS co-design. A workgroup of students are designing a Smart System solution including MEMS sensors and actuators and the relevant CMOS circuitry. The laboratory practice is built on the lecture course of System Level Design. Up to date industry standard software CAD tools are utilized thanks to the EU and international support.

8. Synopsis
  1. FEM basics I.:: nodes, elements, branching, solvers (ANSYS mechanical APDL)
  2. FEM basics II.: Analysis of micromechanical problems (Beam stresses and deflections, Bending of a Solid Beam (Plane Elements) Large Deflection of a Cantilever), coupled field problems: electro-thermal domain
  3. Work environment of FEM tools I: Workbench fundamentals – design modeler, import geometries, solution analysis (ANSYS Workbench)
  4. Work environment of FEM tools II: Parameter sweeping, coupled field analysis: thermo-electro-mechanic effect (ANSYS Workbench)
  5. Speeding up the simulation by the application of reduced order models (RoM-s) I.: model preparation, solution analysis, generate & use pass, geometry extension
  6. Project work I: MEMS layout design, simulation and optimization by FEM tools I.
  7. Project work II: MEMS layout design, simulation and optimization by FEM tools II.
  8. Project work III: MEMS layout design, simulation and optimization by FEM tools III.
  9. Digital design toolchain I.: VHDL-based RTL design and functional verification
  10. Digital design toolchain II.: from RTL to silicon:  dynthesis and timing simulation
  11. Project work IV: HDL design practice I.
  12. Project work V: HDL design practice II.
  13. Project work VI: HDL design practice III.
  14. Project work VII: Integrated system testing
9. Method of instruction

2 hours/week computer based demonstration with practical examples, case studies and hands-on tutorials. During the semester the students have to carry out a 3 phase project work individually.

10. Assessment

In order to obtain credit for the subject the students have to participate in all of the laboratory practices and complete the predefined work, which is evaluated by the laboratory instructor.

In addition a written report about the design work must be filed at the end of the semester which is evaluated by the instructors.

11. Recaps

If a student fails to turn up at any laboratory practices or does not complete the predefined tasks, then the missed/failed laboratory practice has to be repeated. Only two missed/failed laboratory practice can be repeated.

12. Consultations

By appointment with the instructors.

13. References, textbooks and resources

Mandatory curriculum:

-        Periodically updated electronic tutorials by the instructors

-        Appointed chapters from the „Optional, auxiliary resources”

Optional, auxiliary resources

-        Joel A. Kubby: ”A Guide to Hands-on MEMS Design and Prototyping”, Cambridge University Press, 2011. ISBN 978-0-521-88925-4

-        Brand, Fedder, Hierold, Korvink, Tabata: „System-level Modeling of MEMS”, Wiley-VCH, 2013. ISBN 978-3-527-31903-9

-        Huei-Huang Lee: „Finite Element Simulations with ANSYS Workbench 15”, SDC Publications, 2014. ISBN 978-1585039074

-        Peter J. Ashenden, Jim Lewis: „The Designer's Guide to VHDL”, Elsevier Inc., 2008. ISBN 978-0-12-088785-9

-        Zainalabedin Navabi: „VHDL - Modular Design and Synthesis of Cores and Systems”, McGraw-Hill Professional, 2007. ISBN  978-0071475457

For Hungarian speaking students:

-        Kovács Ádám, Moharos István, Oldal István, Szekrényes András: „VÉGESELEM-MÓDSZER - Egyetemi tananyag”, Typotex Kiadó, 2011. ISBN 978-963-279-539-3

-        Hosszú Gábor, Keresztes Péter: „VHDL-alapú rendszertervezés”, Szak Kiadó, 2012. ISBN 978-963-9863-24-8

14. Required learning hours and assignment

Classes

28

Preparation for lecture classes

0

Preparation for classroom practices

0

Preparation for laboratories

20

Preparation for test

0

Homework

12

Learning the prescribed matters

0

Preparation for exam

0

Összesen

60

15. Syllabus prepared by

Name:

Affiliation:

Department, institute:

 

Dr. György Bognár

Associate professor

Department of Electron Devices

Dr. András Timár

Assistant professor

Department of Electron Devices

Dr. Péter Gábor Szabó

Assistant professor

Department of Electron Devices

Ferenc Ender

Assistant lecturer

Department of Electron Devices

Péter Horváth

Assistant lecturer

Department of Electron Devices

Gábor Takács

Assistant lecturer

Department of Electron Devices