Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Technology of IT Devices

    A tantárgy neve magyarul / Name of the subject in Hungarian: IT eszközök technológiája

    Last updated: 2023. január 31.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics

    Software Engineering

    BSc course

    Course ID Semester Assessment Credit Tantárgyfélév
    VIEEAC00 5 2/0/1/f 4  
    3. Course coordinator and department Dr. Ress Sándor László,
    4. Instructors

    Dr. Gábor Takács

    senior lecturer

    Dept. of Electron Devices

    5. Required knowledge Physics, Digital technique
    6. Pre-requisites
    (TargyEredmeny("BMETE11AX24" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMETE11AX04" , "jegy" , _ ) >= 2)
    (TargyEredmeny("BMEVIMIAA01" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMEVIMIAA02" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMEVIMIA111" , "jegy" , _ ) >= 2)

    ÉS NEM ( TárgyEredmény( "BMEVIEEA307" , "jegy" , _ ) >= 2
    TárgyEredmény("BMEVIEEA307", "FELVETEL", AktualisFelev()) > 0)

    ÉS (Training.Code=("5N-A8") VAGY Training.Code=("5NAA8"))

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Computer architectures
    7. Objectives, learning outcomes and obtained knowledge

    The goal of the subject is to present the students the operation of the most important hardware elements of IT devices, the fundamentals of electronics and its manufacturing technology.  It is presented what opportunities modern microelectronics assures to computation, what are the physical limits and the trends of development. At the laboratory practices the students experience themselves that hardware and software development occurs with the help of similar methods and tools.

    8. Synopsis

    1. Introduction, abstraction levels of the design of IT devices, short summary of the applied technologies. Examples: the structure of a tablet, elements, sensors, manufacturing technology.

    2. Integrated circuits used in modern IT devices, trends and roadmaps. Rudiments of VLSI. The properties of semiconductors, the structure of MOS transistors.

    3. Realization of digital logics with logical circuits. The MOS transistor as a switch. Static CMOS logic: inverter, logic gates. Gate delay and power consumption.

    4. Physical realization of microprocessors and glue logic. Realization of combinational and sequential circuits, storage elements. Typical arrangements used in high speed digital systems. 

    5. System design of digital ICs. The digital design flow. Elements of the design system, open design systems. Hardware description languages. System C. Different levels of simulation. 

    6. System design and verification with HDL high level logic and layout synthesis. The hard and soft IP. 

    7. Technologies of operating and cash memories. Operation of the static RAM memory cell. Multiport SRAM, circuit realization of register arrays. Technology of dynamic RAM memories, the ooperation of the cell. Realization of embedded DRAMs. Content addressable memories. 

    8. Technologies of ROM memories.The NAND and NOR arrangements. The floating gate MOS transistor. Basic cell of flash EEPROM, operation and technology. 

    9. Input and output circuits. ESD protection. Driving buses. Generation and distribution of clock sygnals. 

    10. ASIC circuits, system on a chip. Fundamentals of ASIC circuits, semicustom ASIC, gate array, standard cell circuits, cell based ASIC. Programable logic devices. Structure and properties of FPGA-s.

    11. Powering of IT devices. The diode rectifier.  DC-DC conversion, voltage stabilization. Properties of batteries. Example: design of the electrical design of a simple microcontroller system. 

    12. Structure of magnetic and optical data storage systems, the used technologies and sensors. 

    13. Sensors in desktop and mobile computing: temperature, displacement, exeleration, tactile sensing. 

    14. Integrated sensors, CMOS image sensors, manufacturing technologies, MEMS devices. 

    15. Displace and display control. The operation of TFT realization of backplane illumination. LED and laser diodes. Technologies of touch screens. The electrical paper. Printing technologies. Laser and ink jet printers.

    16. AD/DA conversion. Sampling. Ideal and real converters. The major converting methods. 

    17. Power and temperature issues at modern IT devices. Thermal resistance and thermal capacitance. Passive and forced cooling technologies. Low power design on system level. Thermal problems or servers and data centers. 

    18.  The basics of electronics technology. Printed circuit boards, flexible carriers. Packaging of passive and active components, basic properties. 

    19. CMOS technology, scaling problems. Trends and new solutions in microelectroncs. Outlook towards nanoelectronics. 

    1 hour/week laboratory practice belongs to the subject. The goal of the laboratory is to support the understanding of the lectured material. The laboratory practices are held in two our blocks in the following subjects: 

    1. Measurement fundamentals e.g. measuring transfer characteristics of a CMOS inverter

    2. Circuit simulation

    3. Thermal simulation

    4. Design with system C

    5. Realization of the design system in an FPGA

    6. Repetation occasion


    9. Method of instruction

    The theory of the subject is lectured in 2 hours/week. 

    In the laboratories the students solve individual tasks.

    10. Assessment

    In the lecturing period the conditions of the signature and Semester mark are the following:

    • accomplishment of the laboratory practices (this is controlled in each occasion, each task has to be accomplished at least on fair level. 
    • Achieving minimum fair level at one of the tests
    11. Recaps

    To repeat the test one occasion is assured during the semester. In the repetition week an additional repetition occasion is assured.

    One laboratory practice can be repeated on the repetition occasion during the Semester. Additional repetition occasions will be assured during the repetition week. 

    12. Consultations Consultation is assured every week. The time and place of the consultation will be agreed with the students. Before the test special consultation will be offered.
    13. References, textbooks and resources Handouts and lecture notes will be provided on the homepage of the subject.
    14. Required learning hours and assignment
    Kontakt óra 56
    Félévközi készülés órákra 20
    Felkészülés zárthelyire 20
    Házi feladat elkészítése 
    Kijelölt írásos tananyag elsajátítása 
    Felkészülés laborra
    Összesen 120
    15. Syllabus prepared by




     Dr. Marta Rencz  Professor Dept. of Electron Devices

    Dr. Andras Poppe

    Assoc. prof.

    Dept. of Electron Devices

    Dr. Sandor Ress

    Assoc. prof.

    Dept. of Electron Devices