Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    


    A tantárgy neve magyarul / Name of the subject in Hungarian: Elektronika

    Last updated: 2012. április 13.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics

    Course ID Semester Assessment Credit Tantárgyfélév
    VIEEA307   3/1/0/f 4  
    3. Course coordinator and department Kerecsen Istvánné, Elektronikus Eszközök Tanszéke
    5. Required knowledge Physics, Digital design
    6. Pre-requisites
    (TárgyEredmény( "BMETE11AX04" , "jegy" , _ ) >= 2
    VAGY TargyEredmeny("BMETE11AX04", "FELVETEL", AktualisFelev()) > 0
    VAGY TárgyEredmény( "BMETE11AX24" , "jegy" , _ ) >= 2
    VAGY TargyEredmeny("BMETE11AX24", "FELVETEL", AktualisFelev()) > 0
    VAGY TárgyEredmény( "BMETE111212" , "jegy" , _ ) >= 2
    VAGY TárgyEredmény( ahol a TárgyKód = "BMETE111821", ahol a Típus = "JEGY", ahol a Ciklus = tetszőleges, ahol a KépzésKód = tetszőleges) >= 2
    VAGY KépzésLétezik( ahol a KépzésKód = "5N-08S")
    VAGY KépzésLétezik("5N-08")

    EgyenCsoportTagja("Brazil 2015-16-1_erk") )

    ÉS NEM ( TárgyEredmény( "BMEVIEEAC00" , "jegy" , _ ) >= 2
    TárgyEredmény("BMEVIEEAC00", "FELVETEL", AktualisFelev()) > 0)

    ÉS Training.Code=("5N-A8")

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    Recommended: BMETE11AX01 Physics 1., BMETE11AX02 Physics 2., BMEVIMIA102 Digital Design 1., BMEVIMIA111 Digital Design 2.,
    7. Objectives, learning outcomes and obtained knowledge The course aims to familiarize students with the most important hardware elements of informatics and to show the opportunities and limitations of informatics provided by microelectronics.
    8. Synopsis Introduction, the history of electronics and microelectronics. The basic laws of electronics, equivalent circuits, RC networks.
    Introduction to semiconductor physics. Currents in semiconductors. The p-n junction and the operation of the semiconductor diode. The characteristic functions and application of the diode.
    Computer aided design of diode circuits. Circuit design using a circuit simulator. Hand calculation methods. Diode logic, rectification, application examples.
    The operation of current controlled sources. The bipolar transistor, modes of operation, characteristic functions, models. Calculation of transistor circuits.
    The MOS capacitance. The operation of voltage controlled sources.The types of MOS transistors, characteristic functions models.
    Integrated circuits. The rudiments of VLSI circuits and microelectronics technology. Introduction to the details of road maps. The elements of MOS circuits. The properties of wires. The elements of bipolar technology.
    Digital circuits. The properties of an inverter. MOS inverters, basic and complex logic gates.
    CMOS circuits, inverter, logic gates, complex gates, transfer gates, transfer gate circuits.
    Different types of combinational logic realized with CMOS gates. Driver and I/O circuits. Monostable and bistable circuits used in sequential networks, registers, arithmetic elements.
    Semiconductor memories. Mask programmed ROM, EPROM, EEPROM, FLASH memories, static and dynamic RAM memories.
    Analog integrated circuit elements. Ideal and nonideal amplifiers, operational amplifier circuits. A/D and D/A converters.
    The testing of integrated circuits -  boundary scan.
    ASICs (application specific integrated circuit) and their design methods.
    Display toos (CRT, LCD, plasma display).
    MEMS (micro electro mechanical system) structures.

    The course includes laboratory session (1 hour / week)

    The laboratory sessions help students understand and memorize the materials covered in class. The tasks to accomplish during the semester are:

    • simulation of a simple, 1-2 transistor nalog circuit (pl. common-emitter amplifier)
    • gate level simulation of a MOS/CMOS logic gate
    • application of a hardware definition language - a simple digital function is realized, tested and synthesised
    • testing of the synthesised RTL code using a logic simulator
    • realization of the synthesised circuit in an FPGA and the testing of the circuit using a development board
    9. Method of instruction Lectures and laboratory sessions
    10. Assessment 2 tests (on 7th and 13th week) -- they can be repeated
    • they consist of two parts: 10 small questions and two problems (one of them is very simple)
    • at least 60% of the small questions has to be answered correctly

    3 small tests

    • written during lectures
    • announced on the preceding week
    • two of the tree with highest points  count
    • one of them can be repeated at the end of the semester


    • 70%: two tests, 30%: small tests
    • The questions for every single material  are given at the end of each lecture.
    11. Recaps The tests can be repeated on the last week of the semester. If an average of 2 is not achieved, tests can be repeated according to the Code of Studies and Exams.
    12. Consultations At previously arranged times during the semester
    14. Required learning hours and assignment
    Kontakt óra56
    Félévközi készülés órákra20
    Felkészülés zárthelyire44
    Házi feladat elkészítése
    Kijelölt írásos tananyag elsajátítása
    15. Syllabus prepared by Kerecsen Istvánné Dr. Rencz Márta, Professor, Department of Electron Devices