Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Electronics 2

    A tantárgy neve magyarul / Name of the subject in Hungarian: Elektronika 2

    Last updated: 2021. szeptember 1.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Electrical Engineering
    BSc
    Obligatory
    Course ID Semester Assessment Credit Tantárgyfélév
    VIAUAC05 5 4/1/0/f 5  
    3. Course coordinator and department Dr. Futó András,
    Web page of the course https://www.aut.bme.hu/Course/Electronics2
    4. Instructors
    Tamás Kökényesi, BME AUT
    Dr. Istvan Varjasi, BME AUT



    5. Required knowledge Electrical networks, electron devices and fundamental circuits, basics of linear control theory. 
    6. Pre-requisites
    Kötelező:
    (((TargyEredmeny("BMEVIHIAB02" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMEVIHIA205" , "jegy" , _ ) >= 2)
    ÉS
    (TargyEredmeny("BMEVIMIAB01" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMEVIMIA206" , "jegy" , _ ) >= 2)) )


    ÉS NEM ( TárgyEredmény( "BMEVIAUA300" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIAUA300", "FELVETEL", AktualisFelev()) > 0)

    ÉS (Training.Code=("5N-A7") VAGY Training.Code=("5N-A7H") VAGY Training.Code=("5NAA7"))

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Ajánlott:

    (((TargyEredmeny("BMEVIHIAB02" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMEVIHIA205" , "jegy" , _ ) >= 2)
    ÉS
    (TargyEredmeny("BMEVIMIAB01" , "jegy" , _ ) >= 2 VAGY
    TargyEredmeny("BMEVIMIA206" , "jegy" , _ ) >= 2)) )


    ÉS NEM ( TárgyEredmény( "BMEVIAUA300" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIAUA300", "FELVETEL", AktualisFelev()) > 0)

    ÉS (Training.Code=("5N-A7") VAGY Training.Code=("5N-A7H") VAGY Training.Code=("5NAA7"))

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    Proposed:

    Signals and Systems, Electronics 1, Measurement Technology 

    7. Objectives, learning outcomes and obtained knowledge

    The course lays down the basics to understand the system level functions of more complex electronic systems including the underlining circuitry. It also presents the related calculation rules and design principles. The discussion of more complex electronic units is made possible by the ability to build upon previous knowledge from the Signals and Systems 1 and 2, Electronics 1, and Measurement Technology courses, thereby relating closer to the applications educated on major or specialization courses.

     

    The skills in electronics obtained in the framework of this course (together with the course entitled Electronics 1) empower students with the necessary expertise to understand the courses of the study specialization blocks.

    8. Synopsis

    Part I.: Signal level electronics

    Nonlinear circuits: Logarithmic and exponential amplifiers, rectifiers, limiters, piecewise linear circuits.

    The phase-locked loops and their applications: Structure, linear small signal baseband model, different types of the PLL-s.

    Analysis of the linear baseband model. Analog modulations: AM-DSB, AM-DSB/SC, AM-SSB, QAM, PM and FM. Modulators and demodulators.

    Selective electronic circuits, filters: Specification, approximation, tolerance scheme, transformations. Active RC circuits, resonant filters (LRC circuits, ceramic filters, etc.).

     

    Part 2: Power electronics

    Power electronic semiconductor devices and modules: PN junction, Bipolar and Darlington Transistor, Thyristor, MOSFET, IGBT.

    Grid commutation based single- and tree phase rectifiers, AC choppers. Calculation of active and reactice AC power. Power factor and harmonic emissions of rectifiers.

    DC regulators: linear and switch-mode power supplies. Overcurrent protection.

    DC-DC converters: buck, boost, buck-boost.

    DC-AC converters: single phase half-bridge and full-bridge voltage source inverters with R, L, and RL loads.

    Thermal problems of the electronic circuits, methods of heat removal. Conduction, convection, radiation. Thermal resistance and capacitance. Cooling methods, heat pipe. Thermal design of electronic devices with CFD. Heat sink of mobile equipment.

    9. Method of instruction

    The theoretical course material is shown on lectures of 4 hours per week. The study material is illustrated with drawings, computer simulations, and additional exercises.

    Additional 2 hour long practices are also performed on every second week. The possibility is also given to the students to actively practice and show their problem solving skills at the board. 
    10. Assessment

    During the term:

    For the signature:

    • success on 2 written mid-term tests at a minimum pass (2) grade,
    • presence on the practices as defined in the Code of Studies and Exams (CSE)
    • successful presentation of the homework

    The homework is of circuit analysis type. Simulation software (e.g. PSPICE) can also be used to help solving the homework. Additional consultation is also provided for the homework if needed.

    The mid-term grade is calculated based on the weighted average of the two mid-term test and the homework results. Activity on the classes is also taken into account.

    During the exam period: none.

    11. Recaps

    For repeating the two mid-term tests, one repeat test occasion is provided during the term for each. One additional repeat occasion is provided during the repeat week, where one of the tests can be repeated. The total number of repeats taken cannot exceed three. At least one of the two mid-term tests needs to be successfully passed during the term.

    If the presentation of the homework is not successful during the term, then it can be repeated once during the repeat week.

    12. Consultations

    Based on the demand, appointed with the lecturer.

    13. References, textbooks and resources

    Electronic study materials: slides, translated textbook chapters, simulation files, and practice materials supplied on the homepage of the course.

     

    In Hungarian: Elektronika 2 jegyzet: VI201-050, 2014, Varjasi, Balogh, Futó, Gájász, Hermann, Kárpáti

    14. Required learning hours and assignment

    Contact hours

    70

    Mid-term preparation for lectures

    16

    Mid-term preparation for practices

    14

    Preparation for Mid-term test

    30

    Writing the Homework

    20

    Total

    150

    15. Syllabus prepared by

    dr. István Varjasi, Associated Professor, Department of Automation and Applied Informatics