Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Control Engineering

    A tantárgy neve magyarul / Name of the subject in Hungarian: Szabályozástechnika

    Last updated: 2012. november 23.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Course ID Semester Assessment Credit Tantárgyfélév
    VIAUA309   3/1/0/f 4  
    3. Course coordinator and department Dr. Keviczky László,
    6. Pre-requisites
    TárgyEredmény( ahol a TárgyKód = "BMEVIHVA214", ahol a Típus = "JEGY", ahol a Ciklus = tetszőleges, ahol a KépzésKód = tetszőleges) >= 2
    TargyEredmeny( "BMEVIHVAB00" , "jegy" , _ ) >= 2
    TárgyEredmény( ahol a TárgyKód = "BMEVIEV2217", ahol a Típus = "JEGY", ahol a Ciklus = tetszőleges, ahol a KépzésKód = tetszőleges) >= 2
    TárgyEredmény( "BMEVIEV2239" , "jegy" , _ ) >= 2
    TárgyEredmény( "BMEVIEV2214" , "jegy" , _ ) >= 2
    TárgyEredmény( "BMEVIEV2501" , "jegy" , _ ) >= 2
    TárgyEredmény( "BMEVIEVF508" , "jegy" , _ ) >= 2
    TargyEredmeny("BMEVIEV2821", "JEGY", _) >= 2
    KépzésLétezik( ahol a KépzésKód = "5N-08S")
    EgyenCsoportTagja("Brazil 2015-16-1_erk")

    ÉS Training.Code=("5N-A8")

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rendek grafikus formában itt láthatók.

    7. Objectives, learning outcomes and obtained knowledge The course provides the students with the fundamental concepts of control engineering including the operating principles of control systems, their analysis and synthesis using appropriate software and hardware tools. Some basic software engineering approaches are also presented.


    Obtained skills and expertise:


    The student successfully completing the course will be able to analyze continuous and discrete time control systems in various software engineering applications, to understand and solve the most common control problems in real-time embedded environment and to develop control software and rapid control prototypes. The course also provides sufficient background for later specialized studies.


    8. Synopsis Modeling and system engineering description of processes: Equilibrium points of nonlinear systems, linearization. State equation of dynamical systems, computation of the transients. Transfer function, poles and zeros, frequency functions, Nyquist and Bode diagrams. Fundamental ideas of control engineering: The principles of control, feedback control and open loop control. Block-diagram algebra and transformations. Set point control and reference signal tracking, the role of negative feedback. Expectations for actuators and sensors, standard signal domains. Performances of control systems. Stability criterions. Idea and application of root locus. General algebraic (polynomial) design methods: Youla parameterization. Approximating inverses. Control of stable and unstable systems. Application of Diophantine equation. Different types of two degree of freedom control structures. Synthesis of continuous time control systems: Closed control loop, open loop, loop gain, type number. PID controller. Controller parameter design for prescribed steady-state accuracy and phase margin. Control of dead time systems. Robustness investigation of control systems, sensitivity functions. The effect and handling of saturations. Digital control systems: Sampling theorem of Shannon, holding elements. Discrete time transfer function. Transfer functions and pole-zero configurations of typical elements. Discrete time PID control algorithms. Discrete time controller design based on continuous time methods. Saturation handling. Control systems in state space: Controllability and observability. Pole assignment by using state feedback, state observer design in continuous and discrete time. Properties of the equivalent closed loop control system. Two step design. Outlook: Process identification, optimal and robust control design, adaptive control.


    13. References, textbooks and resources

    A. D. Lewis, A Mathematical Introduction to Feedback Control, 2002

    Karl Johan Aström, Richard M. Murray. Feedback systems: an introduction for scientists and engineers. Princeton University Press, 2008

    B. C. Kuo, Farid Golnaraghi. Automatic Control Systems, 8th edition. Wiley, 2001

    14. Required learning hours and assignment
    Kontakt óra
    Félévközi készülés órákra
    Felkészülés zárthelyire
    Házi feladat elkészítése
    Kijelölt írásos tananyag elsajátítása