Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Calculus

    A tantárgy neve magyarul / Name of the subject in Hungarian: Kalkulus

    Last updated: 2024. június 17.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics

    Calculus BProf, BSc


    Course ID Semester Assessment Credit Tantárgyfélév
    TE90AX55 1 2/3/0/v 6  
    3. Course coordinator and department Dr. Nagy Noémi,
    4. Instructors dr. Nagy Noémi (assistant professor)

    dr. Pataki Gergely

    dr. Farkas Lóránt Ernő

    Bodrogné dr. Réffy Júlia

    dr. Nagy Ilona

    dr. Tasnádi Tamás

     Department Of Analysis And Operations Research, Analysis Group, Faculty of Natural Sciences

    5. Required knowledge
    High school studies.
    6. Pre-requisites
    Kötelező:
    Training.Code=("5N-A9")

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Ajánlott:
    -
    7. Objectives, learning outcomes and obtained knowledge The objective is to provide the students with the required theoretical background in calculus for further engineering.
    8. Synopsis
    1. Basics of linear algebra. Determinant of a matrix. Solving a system of linear equations.
    2. Real sequences. Special limits, number e. Operations on convergent sequences. Monotonic and bounded sequences.
    3. Elementary functions and their inverses.
    4. Complex numbers.
    5. Limit of real functions of a single variable, some important limits. Continuity. 
    6. Differentiability of real functions of a single variable. Differentiation rules, derivatives of elementary functions. Curve sketching for a function, local and absolute extrema, monotonicity and convexity. L′Hospital rule, Taylor theorem.
    7. Integral of functions of a single variable. Properties of the Riemann integral, Newton-Leibniz theorem, antiderivatives, integration by parts, integration by substitution. Integration in special classes of functions. Improper integrals. Applications of the integral.
    13. References, textbooks and resources

    Thomas' Calculus, Giordano Frank R. – Joel Hass – Thomas George Brinton – Maurice D. Weir, TYPOTeX


    14. Required learning hours and assignment
    Kontakt óra70
    Félévközi készülés órákra38
    Felkészülés zárthelyire24
    Házi feladat elkészítése0
    Kijelölt írásos tananyag elsajátítása0
    Vizsgafelkészülés48
    Összesen180
    15. Syllabus prepared by dr. Tasnádi Tamás, Department Of Analysis And Operations Research, Analysis Group, Faculty of Natural Sciences