vissza a tantárgylistához   nyomtatható verzió    

    Nanoelectronics and Nanotechnology

    A tantárgy neve magyarul / Name of the subject in Hungarian: Nanoelektronika, nanotechnológia

    Last updated: 2015. február 10.

    Budapest University of Technology and Economics
    Faculty of Electrical Engineering and Informatics
    Electrical engineering MSc
    Microelectronics and electron technology
    Course ID Semester Assessment Credit Tantárgyfélév
    VIEEMA00 1 2/1/0/v 4  
    3. Course coordinator and department Dr. Neumann Péter Lajos,
    4. Instructors

    Name:


    department

    Dr. Mizsei, János

    prof.

    EET

    Dr. Jakab, László

    prof.

    ETT

    Dr. Bonyár, Attila

    senior lecturer

    ETT

    Dr. Gyulai, József

    prof. emeritus

    EET

    6. Pre-requisites
    Kötelező:
    NEM ( TárgyEredmény( "BMEVIEEM251" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény( "BMEVIEEM252" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény( "BMEVIETM152" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény( "BMEVIEEMB03" , "jegy" , _ ) >= 2
    VAGY
    TárgyEredmény("BMEVIEEM251", "FELVETEL", AktualisFelev()) > 0
    VAGY
    TárgyEredmény("BMEVIEEM252", "FELVETEL", AktualisFelev()) > 0
    VAGY
    TárgyEredmény("BMEVIETM152", "FELVETEL", AktualisFelev()) > 0
    VAGY
    TárgyEredmény("BMEVIEEMB03", "FELVETEL", AktualisFelev()) > 0)

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Ajánlott:
     Physics, electronics, microelectronics
    7. Objectives, learning outcomes and obtained knowledge

     Course objective is the introduction into the new approach and new description methodology which are necessary for deeper understanding the operation, design and the process of micro-machining technologies.

     Discussion on the physical phenomena is essential, concerning the electronic devices and components in the nanometer spatial and femtosecond time domain, especially for new devices and their operating principles based on the nanotechnology.

     In the field of electronic technology the targets are the material science oriented basics used in the nanotechnology, physical and chemical properties due to the nanoscale structuring  and applicable test methods which are specific in the nanometer range.

    8. Synopsis

    LECTURES

    1. The manufacturing of electronic systems, physical, chemical and nano-technology approach for reviewing and classification the manufacturing processes.

    2. Component and module circuit technology. Compound-semiconductor structures technology and applications: III-V and II-VI compound semiconductors, types of direct and indirect band structure, optical properties and their use, production and use of the compound semiconductor multilayers.

    3. Preparation of single crystals. Epitaxial growth, oxide growth, chemical deposition, diffusion, ion implantation.

    4. Isotropic and anisotropic etching. Production of three-dimensional structures (cavities, microchannels, membranes, tubes, needles, bridges, console, suspended weight). Technology versions for the bulk and surface micromachining.

    5. Application of thin-film technologies for the production of passive networks, optical layer structures and displays (screens, etc).

    6. Basics of the nanotechnology. Nanotubes, nano-wires, special multi-layer structures. Creating semiconductor nano-objects. Solid state and nano-mechanical properties of thin films. The allotrope modifications of carbon and their nanotechnology applications. The creation and use of metallic nanostructures.

    7. The scale dawn resulting in physical phenomena of electronic devices and circuits, secondary effects (quantum mechanical, thermal ...) their influence on the characteristics of the electron devices and circuits.

    8. Nanoelectronics devices and components (size reduced MOS transistors, vacuum microelectronics, single-electron circuits, memory cells, spintronics, quantum electronics, carbon nanotube transistors, graphene oxide electronics, thermal-electronic integrated circuits).

    9. Quantum valley structures and their practical applications (eg. LEDs).  Application of the  nanotechnology in the thermal management of the classical semiconductor devices.

    10. Special technological processes for the nanometer size systems, the top-down and bottom-up principle, nanolithography, self-adjusting, self-mounting.

    11.   Test methods in the nanometer range, surface scanning test devices (AFM, STM, KFM, NSOM).

    12. Importance of the simulation, overview of simulation methods in the nanoelectronics.

     
    PRACTICES

    1. Semiconductor laboratory visit, overview of all technological equipment.

    2. Semiconductors surface conditions. Relationship between the surface potential barrier and the surface charge density. The surface conditions for various doping and different surface state densities.

    3. Scale down in microelectronics. nanoelectronics and micromechanics: numerical consequences.

    4. Presentation of scanning probe methods of measurement techniques, practical basics of the tunneling and atomic force microscopy. Evaluation and processing of AFM images (eg. leveling, artifact filtering, etc.).

    5. Presentation of advanced scanning probe methods (EFM, MFM, KFM, SNOM, SCM, lithography etc).

    6. Nanostructures production methods: top-down and bottom-up (vapor, liquid phase, solid phase methods, lithography),  practical application of nanostructures.

    7. Allotropic modifications of the carbon, nanotechnology applications: graphite, diamond, fullerenes, carbon nanotubes, graphene.

    9. Method of instruction lectures, laboratory and classroom excercises
    10. Assessment

    one examination paper during the semester at satisfactory or better level

    written exam in the examination season

    11. Recaps The examination paper is reparable once during the semester. The replacement period, subject to payment of a separate fee repeated replacement procedure. We provide another chance to repair the examination paper after the end of the semester.
    12. Consultations preliminary agreement is necessary concerning the date and location
    13. References, textbooks and resources

    Mojzes Imre, Molnár László Milán: Nanotechnológia, Műegyetem Kiadó (2007)

    Konczos Géza: Bevezetés a nanoszerkezetű anyagok világába, Elte Eötvös Kiadó (2009)

    Bharat Bhushan: Springer Handbook of Nanotechnology, Springer (2004)

    Bharat Bhushan: Handbook of Micro/Nano Tribology, CRC (1999)

    Rainer Waser: Nonoelectronics and Information Technology, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2005)

    14. Required learning hours and assignment
    lectures
     42
    preparing for lectures during semester
     18
    preparing for tests
     15
    homework 
    induvidual work on literature
     
    preparing for exam
     45
    total
     120
    15. Syllabus prepared by

    Name:


    department

    Dr. Mizsei János

    prof.

    EET

    Dr. Poppe András

    reader

    EET

    Dr. Jakab László

    prof.

    ETT

    Dr. Bonyár Attila

    senior lecturer

    ETT

    Dr. Harsányi Gábor

    prof.

    ETT